medigraphic.com
SPANISH

Revista Cubana de Genética Comunitaria

ISSN 2070-8718 (Print)
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2020, Number 2

<< Back Next >>

Rev Cub Gen 2020; 13 (2)

Characterization of three patients with a supernumerary chromosomal marker derived from an inv dup (15)

Méndez RLA, Molina GO, Blanco PI, Miñoso PS, Barrios MA, de la Torre SME, Arechavaleta MáB
Full text How to cite this article

Language: Spanish
References: 25
Page: 1-17
PDF size: 423.82 Kb.


Key words:

inv dup 15, chromosome, supernumerary marker.

ABSTRACT

Introduction: 25 – 50 % of all supernumerary marker chromosomes come from chromosome 15, most are identified as an inversion duplication of 15 (inv dup 15).
Objectives: To describe three cases of patients with an inv dup chromosomal marker (15), detected in a different way, who are referred to the cytogenetics laboratory of the National Center for Medical Genetics in Havana for dissimilar causes.
Methods: Conventional cytogenetic analyzes in blood and amniotic fluid were performed by the standardized method in the laboratory, based on the protocols of the international guidelines of the Cytogenetics Laboratory Manual. For molecular cytogenetics analysis, VYSIS probes were used, from ABBOT specifically the probe: LSI SRNPN spectrum green / CEP 15 (D15Z1) spectrum red / LSI PML spectrum orange or another variant of this probe with LSI SRNPN spectrum orange / CEP 15 (D15Z1 ) spectrum green / LSI PML spectrum Orange.
Results: Case I, is detected prenatally by means of a fluorescent in situ hybridization test (FISH) in interphase cells, it presents an inv dup15 that includes the 15q11.2-q13 region. There are no fetal ultrasound abnormalities. The couple decides to continue the pregnancy. The girl currently has psycho-motor retardation. Case II, inv dup 15 was detected in a six-year-old girl, with autism spectrum and intellectual disability. The marker includes the 15q11.2-q13 region. Case III, the marker chromosome is detected in a woman of normal intelligence with repeated spontaneous abortions. The inv dup of 15 extends from the centromere to the 15q11.1 region.
Conclusions: The implications in the phenotype of individuals, with a supernumerary marker of inv dup 15, are given by the inclusion or not of the critical zone of the Prader Willy / Angelman syndromes. The inclusion of this region in the marker causes intellectual disability and other physical abnormalities, without detectable effects on prenatal ultrasound. If the marker does not include this region, it is only heterochromatin, it can influence the correct gametogenesis of the carrier, affecting the fertility of the person.


REFERENCES

  1. Blennow E, Hung B, Kristoffersson U, M Vujic, G Annerén, E Holmberg et al. Swedish survey on extra structurally abnormal chromosomes in 39105 consecutive prenatal diagnoses: prevalence and characterization by fluorescence in situ hybridization. Prenat Diagn. 1994 [acceso:18/04/2018];14:1019. Disponible en: https://obgyn.onlinelibrary.wiley.com/doi/epdf/10.1002/pd.1970141103

  2. Crolla JA,Youings S, Ennis S, Jacobs PA. Supernumerary marker chromosomes in man: parental origin, mosaicism, and maternal age revisited. Eur J Hum Genet. 2005 [acceso: 18/04/2018];13:154. Disponible en: https://www.nature.com/articles/5201311

  3. Donlon TA, Lalande M, Wyman A, Bruns G, Latt SA Isolation of molecular probes associated with the chromosome 15 instability in the Prader-Willi syndrome. Proc Natl Acad Sci USA. 1986 [acceso:4/04/2018];83:4408-12. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC323742/

  4. Leana-Cox J, Jenkins L, Palmer CG, Plattner R, Sheppard L, Flejter WL, et al. Molecular cytogenetic analysis of inv dup(15) chromosomes, using probes specific for the Prader-Willi/Angelman syndrome region: clinical implications. Am J Hum Genet. 1994 [acceso:4/05/2018];54:748-56. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1918252/pdf/ajhg00050-0020.pdf/?tool=EBI

  5. Robinson WP, Binkert F, Gine R, C Vazquez, W Müller, W Rosenkranz et al. Clinical and molecular analysis of five inv dup(15) patients. Eur J Hum Genet. 1993 [acceso:2/01/2018]; 1:37. Disponible en: https://www.nature.com/articles/000472386.

  6. Leana - Cox J, Jenkins L, Palmer CG, R Plattner, L Sheppard, W L Flejter et al. Molecular cytogenetic analysis of inv dup(15) chromosomes,using probes specifi c for the Prader - Willi/Angelman syndrome region: clinical implications . Am J Hum Genet. 1994 [acceso:5/05/2018]; 54:748. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1918252/pdf/ajhg00050-0020.pdf/?tool=EBI

  7. Crolla JA, Harvey JF, Sitch FL, N R Dennis. Supernumerary marker 15 chromosomes: a clinical, molecular and FISH approach to diagnosis and prognosis. Hum Genet. 1995 [acceso:14/08/2018];95:161. Disponible en: https://link.springer.com/article/10.1007/BF00209395.

  8. Barch MJ. AGT Cytogenetics Laboratory Manual. 2nd ed. New York: Raven Press; 1991.

  9. Méndez Rosado LA, Cruz Mariño T, Garnier Ávila T, Hernández Gil J, Barrios Martínez A. The inv dup (15) or idic(15) syndrome: a case report. Rev Cubana Genet Comunit. 2012;6(1):61-63

  10. Méndez-Rosado LA, Molina-Gamboa O, Castelvi-Lopez A, Soriano Torres M, Suárez Mayedo U, García Rodríguez M et al. Características del diagnóstico prenatal por FISH en Cuba. Revista Cubana de Pediatría. 2020 [acceso:12/11/2020];92(2):e822 Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0034-75312020000200003.

  11. Boccaccio I, Glatt-Deeley H, Watrin F, Roeckel N, Lalande M, Muscatelli F: The human MAGEL2gene and its mouse homologue are paternally expressed and mapped to the Prader-Willi region. Hum Mol Genet. 1999 [acceso:14/10/2019];8(13):2497-2505. Disponible en: https://academic.oup.com/hmg/article/8/13/2497/651519

  12. MacDonald HR, Wevrick R: The necdin gene is deleted in Prader-Willi syndrome and is imprinted in human and mouse. Hum Mol Genet. 1997 [acceso:14/08/2019];6(11):1873-8. Disponible en: https://www.academia.edu/9467962/The_necdin_gene_is_deleted_in_Prader_Willi_syndrome_and_is_imprinted_in_human_and_mouse.

  13. Glenn CC, Porter KA, Jong MT, Nicholls RD, Driscoll DJ: Functional imprinting and epigenetic modification of the human SNRPN gene. Hum Mol Genet. 1993 [acceso:3/09/2019];2(12):2001-2005. Disponible en: https:///10.1093/hmg/2.12.2001.

  14. Vu TH, Hoffman AR: Imprinting of the Angelman syndrome gene, UBE3A, is restricted to brain. Nat Genet. 1997 [acceso:8/08/2019];17(1):12-3. Disponible en: https://doi.org/10.1038/ng0997-12.

  15. Rougeulle C, Glatt H, Lalande M: The Angelman syndrome candidate gene, UBE3A/E6-AP, is imprinted in brain. Nat Genet .1997 [acceso:17/08/2019];17(1):14-5. Disponible en: DOI: https://10.1038/ng0997-14.

  16. Meguro M, Kashiwagi A, Mitsuya K, Nakao M, Kondo I, Saitoh S, Oshimura M: A novel maternally expressed gene, ATP10C, encodes a putative aminophospholipid translocase associated with Angelman syndrome. Nat Genet. 2001;28(1):19-20. DOI: https://doi.org/10.1038/ng0501-19

  17. Herzing LB, Kim SJ, Cook EH, Jr., Ledbetter DH: The human aminophospholipid-transporting ATPase gene ATP10C maps adjacent to UBE3A and exhibits similar imprinted expression. Am J Hum Genet. 2001 [acceso:17/02/2019];68(6):1501-5. Disponible en: https://www.sciencedirect.com/science/article/pii/S0002929707610611

  18. Hogart A, Nagarajan RP, Patzel KA, Yasui DH, Lasalle JM: 15q11-13 GABAA receptor genes are normally biallelically expressed in brain yet are subject to epigenetic dysregulation in autismspectrum disorders. Hum Mol Genet. 2007 [acceso:19/09/2019]. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1934608/pdf/nihms22589.pdf

  19. Huibregtse JM, Scheffner M, Beaudenon S, Howley PM: A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase. Proc Natl Acad Sci USA. 1995;92(7):2563-7. DOI: https://dx.doi.org/10.1073%2Fpnas.92.7.2563

  20. Tesis doctoral Caracterización de la región cromosómica 15q11-q13 del genoma humano Variabilidad genómica en el autismo e identificación de ncRNAs. DrC Celia Cerrato Rivera. Universidad Pompeu Fabra.2007.

  21. Nonaka T, Ooki I, Enomoto T, Takakuwa K. Two cases of recurrent abortions in which isodicentric chromosome 15 was observed in the husbands. J. Gynaecol Res. 2014 [acceso:12/10/2019];40(6):1795-8. Disponible en: https://obgyn.onlinelibrary.wiley.com/doi/epdf/10.1111/jog.12401

  22. Shim SH, Lee CH, Park YJ, Lee HJ, Park WI, Cho YH. Two inv dup (15) chromosomes in a woman with repeated abortions. Am J Med Genet. 2001 [acceso: 03/03/2020];104(4):303-6. Disponible en: https://onlinelibrary.wiley.com/doi/10.1002/ajmg.10082

  23. Vulcani-Fleitas TM, Gil da Silva-López VL, Varella- García M, Maciel- Guerra AT. Infertility and marker chromosomes: application of molecular cytogenetic techiques in a case of inv dup (15). L Appl Genet. 2006 [acceso: 13/08/2021];47(1):89-91. Disponible en: https://link.springer.com/article/10.1007/BF03194605

  24. Oracova E, Musilovap P, Kopecna O, Rybar R, Vozdova M, Veselak K et al. Sperm and Embryo Analysis in a Carrier of Supernumerary inv dup(15) Marker Chromosome. J Androl, 2009 [acceso:17/12/2019];(1).30:233-9. Disponible en: https://onlinelibrary.wiley.com/doi/full/10.2164/jandrol.108.006783

  25. Liehr T and Weise A. Frequency of small supernumerary marker chromosomes in prenatal, newborn, developmentally retarded and infertility diagnostics. Internat J Molec Medic. 2007 [acceso:14/08/2019]; Disponible en: https://www.spandidos-publications.com/ijmm/19/5/719




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Cub Gen . 2020;13