medigraphic.com
SPANISH

Salud Pública de México

Instituto Nacional de Salud Pública
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2022, Number 5

<< Back Next >>

salud publica mex 2022; 64 (5)

Spatiotemporal patterns of dengue and Zika incidence during the 2015-2018 outbreak of Zika in Mexico

Cortes-Escamilla A, Roche B, Rodríguez-López MH, López Gatell-Ramírez H, Alpuche-Aranda CM
Full text How to cite this article

Language: English
References: 54
Page: 478-487
PDF size: 655.38 Kb.


Key words:

Dengue, Zika, spatiotemporal transmission, spatial autocorrelation.

ABSTRACT

Objective. Evaluate spatially and temporally simultaneous presence of clusters of dengue and Zika clinical cases and their relationship with expected dengue transmission risk. Materials and methods. A classification of dengue risk transmission was carried out for whole country, and spatial autocorrelation analyses to identify clusters of confirmed clinical cases of dengue and Zika from 2015 to 2018 was conducted using Moran’s Index statistics. Results. Clusters of both diseases were identified in dengue-high risk municipalities at the beginning of the outbreak, but, at the end of the outbreak, Zika clusters occurred in dengue low-risk municipalities. Conclusion. This study identified Zika clusters in low-risk dengue areas suggesting participation of several factors that favor virus introduction and dissemination, such as differences in entomological and control interventions, and the possibility of cross-immunity in the population.


REFERENCES

  1. Zambrano LI, Vasquez-Bonilla WO, Fuentes-Barahona IC, da SilvaJS, Valle-Reconco JA, Medina MT, et al. Spatial distribution of Zika inHonduras during 2016-2017 using geographic information systems (GIS)– Implications for public health and travel medicine. Travel Med Infect Dis. 2019;31:101382. https://doi.org/10.1016/j.tmaid.2019.01.017

  2. Lozano-Fuentes S, Hayden MH, Welsh-Rodríguez C, Ochoa-MartinezC, Tapia-Santos B, Kobylinski KC, et al. The dengue virus mosquitovector Aedes aegypti at high elevation in Mexico. Am J Trop Med Hyg.2012;87(5):902-9. https://doi.org/10.4269/ajtmh.2012.12-0244

  3. Sirohi D, Kuhn RJ. Zika virus structure, maturation, and receptors. J InfectDis. 2017;216(suppl 10):S935-44. https://doi.org/10.1093/infdis/jix515

  4. Valero N, Mosquera J, Añez G, Levy A, Marcucci R, de Mon MA. Differentialoxidative stress induced by dengue virus in monocytes from humanneonates, adult and elderly individuals. PLoS One. 2013;8(9):e73221.https://doi.org/10.1371/journal.pone.0073221

  5. Gómez-Dantes H. El dengue en las américas. Un problema de saludregional. Salud Publica Mex. 1991;33(4):347-55 [cited Dec 2021]. Availablefrom: http://saludpublica.mx/index.php/spm/article/view/5417/5699

  6. López-Gatell H, Hernández-Avila M, Hernández Ávila JE, Alpuche-ArandaCM. Dengue in Latin America: a persistent and growing public healthchallenge. In: Franco-Paredes C, Santos-Preciado JI, eds. Neglected TropicalDiseases. Latin America and the Caribbean.Vienna: Springer, 2015:203-224.https://doi.org/10.1007/978-3-7091-1422-3_11

  7. Díaz-Quiñonez JA, López-Martínez I, Torres-Longoria B, Vázquez-Pichardo M, Cruz-Ramírez E, Ramírez-González JE, et al. Evidence ofthe presence of the Zika virus in Mexico since early 2015. Virus Genes.2016;52(6):855-7. https://doi.org/10.1007/s11262-016-1384-0

  8. Dirección General de Epidemiología. Histórico Boletín Epidemiológico.1983-2021. Mexico: Dirección General de Epidemiología, 2021 [cited Dec2021]. Available from: https://www.gob.mx/salud/acciones-y-programas/historico-boletin-epidemiologico

  9. Bisanzio D, Dzul-Manzanilla F, Gómez-Dantés H, Pavia-Ruz N, HladishTJ, Lenhart A, et al. Spatio-temporal coherence of dengue, chikungunyaand Zika outbreaks in Merida, Mexico. PLoS Negl Trop Dis.2018;12(3):e0006298. https://doi.org/10.1371/journal.pntd.0006298

  10. Queiroz E, Medronho R. Spatial analysis of the incidence of Dengue,Zika and Chikungunya and socioeconomic determinants in the city ofRio de Janeiro, Brazil. Epidemiol Infect. 2021;149:e188-e188. https://doi.org/10.1017/S0950268821001801

  11. Freitas LP, Cruz OG, Lowe R, Sá Carvalho M. Space-time dynamics ofa triple epidemic: dengue, chikungunya and Zika clusters in the city of Riode Janeiro. Proceedings Biol Sci. 2019;286(1912):20191867. https://doi.org/10.1098/rspb.2019.1867

  12. Langerak T, Mumtaz N, Tolk VI, van Gorp ECM, Martina BE, Rockx B, etal. The possible role of cross-reactive dengue virus antibodies in Zika viruspathogenesis. PLoS Pathog. 2019;15(4):e1007640. https://doi.org/10.1371/journal.ppat.1007640

  13. Katzelnick LC, Narvaez C, Arguello S, López-Mercado B, Collado D, AmpieO, et al. Zika virus infection enhances future risk of severe dengue disease.Science. 2020;369(6507):1123-8. https://doi.org/10.1126/science.abb6143

  14. Wen J, Shresta S. Antigenic cross-reactivity between Zika and dengueviruses: is it time to develop a universal vaccine? Curr Opin Immunol.2019;59:1-8. https://doi.org/10.1016/j.coi.2019.02.001

  15. Moghadas SM, Shoukat A, Espindola AL, Pereira RF, Abdirizak F, LaskowskiM, et al. Asymptomatic transmission and the dynamics of Zika Iinfection. SciRep. 2017;7(1):5829. https://doi.org/10.1038/s41598-017-05013-9

  16. Instituto de Diagnóstico y Referencia Epidemilógicos Dr Manual MartínezBáez. Lineamientos para la vigilancia por laboratorio del Dengue y otrasarbovirosis. Mexico: InDRE, 2017 [cited Dec 2021]. Available from: https://www.gob.mx/cms/uploads/attachment/file/629265/Lineamientos_Dengue_Arb_V1-2021.pdf

  17. Dirección General de Epidemiología. Bases Nominales de Dengue2015-2019. Mexico, 2019.

  18. Cuervo-Robayo AP, Téllez-Valdés O, Gómez-Albores MA, Venegas-Barrera CS, Manjarrez J, Martínez-Meyer E. An update of high-resolutionmonthly climate surfaces for Mexico. Int J Climatol. 2014;34(7):2427-37.https://doi.org/10.1002/joc.3848

  19. Cortes-Escamilla A, Roche B, Rodríguez MH, López-Gatell Ramírez H,Alpuche-Aranda CM. Supplementary-information-DENZIK. Github Repos.

  20. 2022 [cited Dec 2021]. Available from: https://github.com/Anais-Cortes/Supplementary-information-DENZIK20. Costa EAP, Santos EM, Correia JC, Albuquerque CMR de. Impactof small variations in temperature and humidity on the reproductiveactivity and survival of Aedes aegypti (Diptera, Culicidae). RevBras Entomol. 2010;54(3):488-93. https://doi.org/10.1590/S0085-56262010000300021

  21. Carrington LB, Armijos MV, Lambrechts L, Barker CM, Scott TW.Effects of fluctuating daily temperatures at critical thermal extremes onAedes aegypti life-history traits. PLoS One. 2013;8(3):e58824. https://doi.org/10.1371/journal.pone.0058824

  22. Desenclos JC. Transmission parameters of vector-borne infections.Médecine Mal Infect. 2011;41(11):588-93. https://doi.org/10.1016/j.medmal.2011.07.016

  23. Gimond M. Intro to GIS and Spatial Analysis. 2019 [cited May 2020].Available from: https://mgimond.github.io/Spatial/spatial-autocorrelation.html

  24. Rabal H, Cap NL, Grumel E, Trivi M. An intuitive introduction to theconcept of spatial coherence. arXiv. 2014. https://doi.org/10.48550/ar-Xiv.1408.3820

  25. Anselin L, Li X. Operational local join count statistics for clusterdetection. J Geogr Syst. 2019;21(2):189-210. https://doi.org/10.1007/s10109-019-00299-x

  26. Siabato W, Guzmán-Manrique J. La autocorrelación espacial y eldesarrollo de la geografía cuantitativa. Cuad Geogr Rev Colomb Geogr.2019;28(1):1-22. https://doi.org/10.15446/rcdg.v28n1.76919

  27. Anselin L. Local Spatial Autocorrelation. GeoDa, 2020 [cited Mar 8 2021]Available from: https://geodacenter.github.io/workbook/6c_local_multi/lab6c.html

  28. Anselin L. The Moran scatterplot as an ESDA tool to assess localinstability in spatial association. London: Routledge, 1996. https://doi.org/10.1201/9780203739051-8

  29. Lorenzo JMM, Iribas BL. Introducción a la Geoestadstica Lineal. Spain:Netbiblo, 2008.

  30. Gao Y, Cheng J, Meng H, Liu Y. Measuring spatio-temporal autocorrelationin time series data of collective human mobility. Geo-spatial InfSci. 2019;22(3):166-73. https://doi.org/10.1080/10095020.2019.1643609

  31. Czaplewski RL, Reich RM. Expected value and variance of Moran’sbivariate spatial autocorrelation statistic for a permutation test. USA:Department of Agriculture, Forest Service, Rocky Mountain Forest andRange Expriment Station, 1993.

  32. Jaya IGNM, Andriyana Y, Tantular B, Zulhanif, Ruchjana BN. SpatiotemporalDengue disease clustering by means local spatiotemporal Moran’sIndex. IOP Conf Ser Mater Sci Eng. 2019;621(1):12017. https://doi.org/10.1088/1757-899x/621/1/012017

  33. Dzul-Manzanilla F, Correa-Morales F, Che-Mendoza A, Palacio-VargasJ, Sánchez-Tejada G, Gonzáles-Roldan JF, et al. Identifying urban hotspotsof dengue, chikungunya, and Zika transmission in Mexico to support riskstratification efforts: a spatial analysis. Lancet Planet Heal. 2021;5(5):e277-e285. https://doi.org/10.1016/S2542-5196(21)00030-9

  34. Betanzos-Reyes ÁF, Rodríguez MH, Romero-Martínez M, Sesma-Medrano E, Rangel-Flores H, Santos-Luna R. Association of dengue feverwith Aedes spp. abundance and climatological effects. Salud Publica Mex.2018;60:12-20. https://doi.org/10.21149/8141

  35. Da Silva Augusto LG, Gurgel AM, Costa AM, Diderichsen F, LacazFA, Parra-Henao G, et al. Aedes aegypti control in Brazil. Lancet.2016;387(10023):1052-3. https://doi.org/10.1016/S0140-6736(16)00626-7

  36. Uno N, Ross TM. Dengue virus and the host innate immune response.Emerg Microbes Infect. 2018;7(1):167. https://doi.org/10.1038/s41426-018-0168-0

  37. World Health Organization. Vector control operations framework forZika virus. WHO, 2016. Available from: https://www.who.int/publications/i/item/WHO-ZIKV-VC-16.4

  38. Kautz TF, Díaz-González EE, Erasmus JH, Malo-García LR, LangsjoenRM, Patterson EI, et al. Chikungunya virus as cause of febrile illnessoutbreak, Chiapas, Mexico, 2014. Emerg Infect Dis. 2015;21(11):2070-3.https://doi.org/10.3201/eid2111.150546

  39. Rodríguez-Aguilar ED, Martínez-Barnetche J, González-Bonilla CR,Tellez-Sosa JM, Argotte-Ramos R, Rodríguez MH. Genetic diversityand spatiotemporal dynamics of Chikungunya infections in Mexicoduring the outbreak of 2014-2016. Viruses. 2022;14(1):70. https://doi.org/10.3390/v14010070

  40. Hernández-Ávila JE, Palacio-Mejía LS, López-Gatell H, Alpuche-ArandaCM, Molina-Vélez D, González-González L, Hernández-Ávila M. Zika virusinfection estimates, Mexico. Bull World Heal Organ. 2018;96(5):306-13.https://doi.org/10.2471/BLT.17.201004

  41. Wilson AL, Courtenay O, Kelly-Hope LA, Scott TW, Takken W, Torr SJ,et al. The importance of vector control for the control and elimination ofvector-borne diseases. PLoS Negl Trop Dis. 2020;14(1):e0007831. https://doi.org/10.1371/journal.pntd.0007831

  42. Benítez-Valladares D, Kroeger A, Tejeda GS, Hussain-Alkhateeb L. Validationof the Early Warning and Response System (EWARS) for dengueoutbreaks: Evidence from the national vector control program in Mexico.PLoS Negl Trop Dis. 2021;15(12):e0009261. https://doi.org/10.1371/journal.pntd.0009261

  43. Montoya M, Collins M, Dejnirattisai W, Katzelnick LC, Puerta-Guardo H, Jadi R, et al. Longitudinal analysis of antibody cross-neutralizationfollowing Zika virus and Dengue virus infection in Asia and theAmericas. J Infect Dis. 2018;218(4):536-45. https://doi.org/10.1093/infdis/jiy164

  44. Patel B, Longo P, Miley MJ, Montoya M, Harris E, de Silva AM.Dissecting the human serum antibody response to secondary denguevirus infections. PLoS Negl Trop Dis. 2017;11(5):e0005554. https://doi.org/10.1371/journal.pntd.0005554

  45. Tsang TK, Ghebremariam SL, Gresh L, Gordon A, Halloran ME,Katzelnick LC, et al. Effects of infection history on dengue virusinfection and pathogenicity. Nat Commun. 2019;10(1):1246. https://doi.org/10.1038/s41467-019-09193-y

  46. Malavige GN, Fernando S, Fernando DJ, Seneviratne SL. Dengueviral infections. Postgr Med J. 2004;80:588-601. https://doi.org/10.1136/pgmj.2004.019638

  47. Collins MH, McGowan E, Jadi R, Young E, Lopez CA, Baric RS, et al.Lack of durable cross-neutralizing antibodies against Zika virus fromDengue virus infection. Emerg Infect Dis. 2017;23(5):773-81. https://doi.org/10.3201/eid2305.161630

  48. Achee NL, Gould F, Perkins TA, Reiner RC, Morrison AC, RitchieSA, et al. A critical assessment of vector control for dengue prevention.PLoS Negl Trop Dis. 2015;9(5). https://doi.org/10.1371/JOURNAL.PNTD.0003655

  49. Magalhaes T, Braga C, Cordeiro MT, Oliveira ALS, Castanha PMS, MacielAPR, et al. Zika virus displacement by a chikungunya outbreak in Recife,Brazil. PLoS Negl Trop Dis. 2017;11(11). https://doi.org/10.1371/JOURNAL.PNTD.0006055

  50. Brito da Cruz AMC, Rodrigues HS. Personal protective strategies fordengue disease: Simulations in two coexisting virus serotypes scenarios.Math Comput Simul. 2021;188:254-67. https://doi.org/10.1016/j.matcom.2021.04.002

  51. Carrillo-Valenzo E, Danis-Lozano R, Velasco-Hernández JX, Sánchez-Burgos G, Alpuche C, López I, et al. Evolution of dengue virus inMexico is characterized by frequent lineage replacement. Arch Virol.2010;155(9):1401-12. https://doi.org/10.1007/S00705-010-0721-1

  52. Lambrechts L, Fansiri T, Pongsiri A, Thaisomboonsuket B, KlungthongC, Richardson JH, et al. Dengue-1 virus clade replacement in Thailandassociated with enhanced mosquito transmission. J Virol. 2012;86(3):1853-61. https://doi.org/10.1128/JVI.06458-11

  53. Roche B, Gaillard B, Léger L, Pélagie-Moutenda R, Sochaki T, Cazalles B,et al. An ecological and digital epidemiology analysis on the role of humanbehavior on the 2014 Chikungunya outbreak in Martinique. Sci Rep.2017;7(1):5967. https://doi.org/10.1038/s41598-017-05957-y

  54. Carvalho MS, Honorio NA, Garcia LMT, Carvalho LC de S. Aedesægypti control in urban areas: A systemic approach to a complex dynamic.PLoS Negl Trop Dis. 2017;11(7):e0005632. https://doi.org/10.1371/journal.pntd.0005632




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

salud publica mex. 2022;64