medigraphic.com
SPANISH

Investigación en Educación Médica

ISSN 2007-5057 (Print)
Investigación en Educación Médica
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2022, Number 44

<< Back Next >>

Inv Ed Med 2022; 11 (44)

The p-value: how to analyze it to separate from extreme positivism and naive inductivism?

Padilla-Santamaría F
Full text How to cite this article

Language: Spanish
References: 15
Page: 105-114
PDF size: 578.83 Kb.


Key words:

Hypothesis tests, confidence intervals, normal distribution, quantitative methodologies.

ABSTRACT

Despite the new reflections and ideological currents in medical sciences, many researchers remain firmly attached to scientific positivism, naive inductivism and totally reductionist views, where the use of inferential statistics is considered almost indispensable to consider a “high quality” research, and within it, consider the famous p-value as the number that determines that a study is “good” or “bad”, that it is worthwhile or not, that it came out “good” or “bad”. Although inferential statistics is the most frequent in medical sciences, many researchers continue with epistemological problems for the p-value interpretation and make statistical decisions; Therefore, the main objective of this work is to provide a reflection and dynamic analysis of what is p-value, how it is obtained, how it is usually interpreted, and how it should be interpreted.
It should be noted that this paper does not intend to teach statistics, but rather tries to change the way in which students and health professionals interpret inferential statistics, in order to encourage critical reading and thus provide weapons for self-taught learning. To arrive at the appropriate analysis of the p-value, throughout the work I carry out a general and graphic review about the construction of hypotheses, the normal distribution and the hypothesis tests. Although the simple fact that this work talks about inferential statistics already makes it (until a certain point) a positivist article, I hope that the new teaching in this area will allow the training of new professionals and researchers with broader visions of research, and thus, ending the promotion of reductionism and naive inductivism.


REFERENCES

  1. Pérez J. El Positivismo y la Investigación Científica. RevEmpres. 2015;9(3):29-34. Disponible en: https://editorial.ucsg.edu.ec/ojs-empresarial/index.php/empresarial-ucsg/article/view/20

  2. Chalmers AF, (aut.), Pérez E, (trad.). ¿Qué es esa cosa llamadaciencia? Una valoración de la naturaleza y el estatutode la ciencia y sus métodos. 2a ed. Ciudad de México: SigloXXI Editores; 2019.

  3. Kremer-Marietti A. El Positivismo. 2a ed. México: PublicacionesCruz; 1989.

  4. Rodríguez MI, Albert A, Agnelli H. Pruebas de hipótesis y elvalor p: usos e interpretaciones. En: Buendía G, Castañeda A.(eds.). Memoria de la XII Escuela de Invierno en MatemáticaEducativa. Ciudad Madero: Universidad de Los Andes; 2009.104-117. Disponible en: http://funes.uniandes.edu.co/16270/

  5. Daniel WW. Prueba de hipótesis. En: Daniel WW. (aut.),León F. (trad.). Bioestadística. Base para el análisis de lasciencias de la salud. 4a ed. México: Limusa Wiley; 2013.p. 204-94.

  6. Romero N. La revolución en la toma de decisiones estadísticas:el p-valor. Telos. 2012;14(3):439-446. Disponible en:http://www.redalyc.org/articulo.oa?id=99324907004

  7. Daniel WW. Estadística descriptiva. En: Daniel WW. (aut.),León F. (trad.). Bioestadística. Base para el análisis de lasciencias de la salud. 4a ed. México: Limusa Wiley; 2013.p. 15-56.

  8. Daniel WW. Estadística no paramétrica y de libre distribución.En: Daniel WW. (aut.), León F. (trad.). Bioestadística.Base para el análisis de las ciencias de la salud. 4a ed. México:Limusa Wiley; 2013. p. 658-736.

  9. Candia R, Caiozzi G. Intervalos de Confianza. Rev Med Chile.2005;133:1111-1115. doi: 10.4067/S0034-98872005000900017

  10. Flores-Ruiz E, Miranda-Novales MG, Villasís-Keever MÁ.El protocolo de investigación VI: cómo elegir la prueba estadísticaadecuada. Estadística inferencial. Rev Alerg Mex.2017;64(3):364-370. doi: 10.29262/ram.v64i3.304

  11. Tovar CM. El falsacionismo de Popper y sus objeciones almarxismo. Letras. 2019;90(131):210-228. doi: 10.30920/letras.90.131.9

  12. Carvalho J, Patino CM. O que realmente significa o valorp? J Bras Pneumol. 2015;41(5):485. doi: 10.1590/S1806-37132015000000215

  13. Kline RB. Research Trinity. Design, measurement andanalysis. En: Kline RB. (aut.). Becoming a behavioral scienceresearcher: a guide to producing research that matters. 2aed. Nueva York: The Guilford Press; 2020. p. 14-47.

  14. Williamson J. Establishing Causal Claims in Medicine. Int StudPhilos Sci. 2019;32(1):33-61. doi: 10.1080/02698595.2019.1630927

  15. The RECOVERY Collaborative Group. Dexamethasone inHospitalized Patients with Covid-19. N Engl J Med. 2021;384:693-704. doi: 10.1056/NEJMoa2021436




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Inv Ed Med. 2022;11