medigraphic.com
SPANISH

Salud Pública de México

Instituto Nacional de Salud Pública
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2023, Number 2

<< Back Next >>

salud publica mex 2023; 65 (2)

Modified cellular processes in Aedes aegypti infected with Wolbachia and susceptibility to dengue virus

López-Ordóñez T, Díaz-Rodarte KI, Torres-Monzón JA, Casas-Martínez M, Danis-Lozano R, Mosso-González C
Full text How to cite this article

Language: Spanish
References: 46
Page: 136-143
PDF size: 291.73 Kb.


Key words:

Wolbachia, dengue virus, Aedes, proteomics.

ABSTRACT

Objective. To analyze the differential expression of proteins of Ae. aegypti infected with Wolbachia and its association with the viral cycle of dengue virus (DENV). Materials and methods. We review a database of proteins from Ae. aegypti infected and uninfected with Wolbachia and we reviewed published articles in peer-reviewed journals that talk about participation in the protein and viral cycle of DENV. Results. We found proteins that expressed changes in Wolbachia infection, some increased and others decreased, which participate in the processes of entry, replication, and exit of DENV. Conclusions. There are changes in protein expression of Wolbachia-infected cells, which are necessary for the DENV replication cycle, explaining why some Wolbachia-infected mosquitoes are refractory to DENV infection.


REFERENCES

  1. Fernández-Salas I, Danis-Lozano R, Casas-Martínez M, Ulloa A, BondJG, Marina CF, et al. Historical inability to control Aedes aegypti as amain contributor of fast dispersal of chikungunya outbreaks in LatinAmerica. Antiviral Res. 2015;124:30-42. https://doi.org/10.1016/j.antiviral. 2015.10.015

  2. Zheng X, Zhang D, Li Y, Yang C, Wu Y, Liang X, et al. Incompatibleand sterile insect techniques combined eliminate mosquitoes. Nature.2019;572(7767):56-61. https://doi.org/10.1038/s41586-019-1407-9

  3. Werren JH, Baldo L, Clark ME. Wolbachia: master manipulators of invertebratebiology. Nat Rev Microbiol. 2008;6(10):741-51 [citado 2021 agosto 16,2021]. Disponible en: https://www.nature.com/articles/nrmicro1969

  4. Ahmad NA, Mancini M-V, Ant TH, Martinez J, Kamarul GMR, NazniWA, et al. Wolbachia strain wAlbB maintains high density and dengueinhibition following introduction into a field population of Aedes aegypti.Philos Trans R Soc Lond B Biol Sci. 2021;376(1818):20190809. https://doi.org/10.1098/rstb.2019.0809

  5. Pan X, Zhou G, Wu J, Bian G, Lu P, Raikhel AS, et al. Wolbachia inducesreactive oxygen species (ROS)-dependent activation of the Toll pathwayto control dengue virus in the mosquito Aedes aegypti. Proc Natl Acad SciU S A. 2012;109(1):E23-31. https://doi.org/10.1073/pnas.1116932108

  6. Barnard TR, Abram QH, Lin QF, Wang AB, Sagan SM. Molecular determinantsof flavivirus virion assembly. Trends Biochem Sci. 2021;46(5):378-90https://doi.org/10.1016/j.tibs.2020.12.007

  7. Mosso C, Galván-Mendoza IJ, Ludert JE, del Angel RM. Endocyticpathway followed by dengue virus to infect the mosquito cell line C6/36HT. Virology. 2008;378(1):193-9. https://doi.org/10.1016/j.virol.2008.05.012

  8. Randall G. Lipid droplet metabolism during dengue virus infection.Trends Microbiol. 2018;26(8):640-2. https://doi.org/10.1016/j.tim.2018.05.010

  9. Reyes-Ruiz JM, Osuna-Ramos JF, De Jesús-González LA, Hurtado-Monzón AM, Farfan-Morales CN, Cervantes-Salazar M, et al. Isolationand characterization of exosomes released from mosquito cells infectedwith dengue virus. Virus Res. 2019;266:1-14. https://doi.org/10.1016/j.virusres.2019.03.015

  10. Geoghegan V, Stainton K, Rainey SM, Ant TH, Dowle AA, Larson T,et al. Perturbed cholesterol and vesicular trafficking associated withdengue blocking in Wolbachia-infected Aedes aegypti cells. Nat Commun.2017;8(1):1-10. https://doi.org/10.1038/s41467-017-00610-8

  11. Quackenbush J. Microarray data normalization and transformation. NatGenet. 2002;32(Suppl 4):496-501. https://doi.org/10.1038/ng1032

  12. Liu Y, Zhang F, Liu J, Xiao X, Zhang S, Qin C, et al. Transmissionblockingantibodies against mosquito c-type lectins for dengue prevention. PLoS Pathog. 2014;10(2):e1003931. https://doi.org/10.1371/journal.ppat.1003931

  13. Sessions OM, Barrows NJ, Souza-Neto JA, Robinson TJ, Hershey CL,Rodgers MA, et al. Discovery of insect and human dengue virus host factors.Nature. 2009;458(7241):1047-50. https://doi.org/10.1038/nature07967

  14. Carvalho FA, Carneiro FA, Martins IC, Assuncao-Miranda I, FaustinoAF, Pereira RM, et al. Dengue virus capsid protein binding to hepatic lipiddroplets (LD) is potassium ion dependent and is mediated by LD surfaceproteins. J Virol. 2012;86(4):2096-108. https://doi.org/10.1128/JVI.06796-11

  15. Krishnan MN, Sukumaran B, Pal U, Agaisse H, Murray JL, Hodge TW, etal. Rab 5 Is required for the cellular entry of dengue and west nile viruses.J Virol. 2007;81(9):4881-5. https://doi.org/10.1128/JVI.02210-06

  16. Nogalski MT, Chan G, Stevenson EV, Gray S, Yurochko AD. Humancytomegalovirus-regulated paxillin in monocytes links cellular pathogenicmotility to the process of viral entry. J Virol. 2011;85(3):1360-9. https://doi.org/10.1128/JVI.02090-10

  17. Cuartas-López AM, Hernández-Cuellar CE, Gallego-Gómez JC.Disentangling the role of PI3K/Akt, Rho GTPase and the actin cytoskeletonon dengue virus infection. Virus Res. 2018;256:153-65. https://doi.org/10.1016/j.virusres.2018.08.013

  18. Loerke D, Mettlen M, Yarar D, Jaqaman K, Jaqaman H, Danuser G, et al.Cargo and dynamin regulate clathrin-coated pit maturation. Hughson F, ed.PLoS Biol. 2009;7(3):0628-39. https://doi.org/10.1371/journal.pbio.1000057

  19. Ang F, Wong APY, Ng MML, Chu JJH. Small interference RNA profilingreveals the essential role of human membrane trafficking genes in mediatingthe infectious entry of dengue virus. Virol J. 2010;7(24):1-17. https://doi.org/10.1186/1743-422X-7-24

  20. Jitoboam K, Phaonakrop N, Libsittikul S, Thepparit C, Roytrakul S,Smith DR. Actin interacts with dengue virus 2 and 4 envelope proteins.PLoS One. 2016;11(3):1-18. https://doi.org/10.1371/journal.pone.0151951

  21. Tjota M, Lee SK, Wu J, Williams JA, Khanna MR, Thomas GH. AnnexinB9 binds to β(H)-spectrin and is required for multivesicular body functionin Drosophila. J Cell Sci. 2011;124(17):2914-26. https://doi.org/10.1242/jcs.078667

  22. De Maio FA, Risso G, Iglesias NG, Shah P, Pozzi B, Gebhard LG, et al.The Dengue virus NS5 protein intrudes in the cellular spliceosome andmodulates splicing. PLoS Pathog. 2016;12(8):1-29. https://doi.org/10.1371/journal.ppat.1005841

  23. Nguyen THD, Galej WP, Bai XC, Savva CG, Newman AJ, Scheres SHW,et al. The architecture of the spliceosomal U4/U6.U5 tri-snRNP. Nature.2015;523(7558):47-52. https://doi.org/10.1038/nature14548

  24. Su C-I, Tseng C-H, Yu C-Y, Lai MMC. SUMO Modification stabilizesdengue virus nonstructural protein 5 to support virus replication. J Virol.2016;90(9):4308-19. https://doi.org/10.1128/JVI.00223-16

  25. Zhao J. Sumoylation regulates diverse biological processes. Cell MolLife Sci. 2007;64(23):3017-33. https://doi.org/10.1007/s00018-007-7137-4

  26. Noppakunmongkolchai W, Poyomtip T, Jittawuttipoka T, LuplertlopN, Sakuntabhai A, Chimnaronk S, et al. Inhibition of protein kinase Cpromotes dengue virus replication. Virol J. 2016;13(35):1-13. https://doi.org/10.1186/s12985-016-0494-6

  27. Bhattacharya D, Hoover S, Falk SP, Weisblum B, Vestling M, Striker R.Phosphorylation of yellow fever virus NS5 alters methyltransferase activity.Virology. 2008;380(2):276-84. https://doi.org/10.1016/j.virol.2008.07.013

  28. Byk LA, Gamarnik AV. Properties and functions of the dengue viruscapsid protein. Annu Rev Virol. 2016;3(1):263-81 [citado enero 25, 2022].Disponible en: https://pubmed.ncbi.nlm.nih.gov/27501261/

  29. Samsa MM, Mondotte JA, Iglesias NG, Assunção-Miranda I, Barbosa-LimaG, Da Poian AT, et al. Dengue virus capsid protein usurps lipid dropletsfor viral particle formation. PLoS Pathog. 2009:5(10)e1000632. https://doi.org/10.1371/journal.ppat.1000632

  30. Lopez-Denman AJ, Mackenzie JM. The IMPORTance of the nucleus duringflavivirus replication. Viruses. 2017;9(1):1-14. https://doi.org/10.3390/v9010014

  31. Johansson M, Brooks AJ, Jans DA, Vasudevan SG. A small region ofthe dengue virus-encoded RNA-dependent RNA polymerase, NS5,confers interaction with both the nuclear transport receptor importin-βand the viral helicase, NS3. J Gen Virol. 2001;82(4):735-45. https://doi.org/10.1099/0022-1317-82-4-735

  32. Colpitts TM, Barthel S, Wang P, Fikrig E. Dengue virus capsid proteinbinds core histones and inhibits nucleosome formation in human livercells. PLoS One. 2011;6(9):e24365. https://doi.org/10.1371/journal.pone.0024365

  33. Edgil D, Polacek C, Harris E. Dengue virus utilizes a novel strategy fortranslation initiation when cap-dependent translation is inhibited. J Virol.2006;80(6):2976-86. https://doi.org/10.1128/JVI.80.6.2976-2986.2006

  34. Cervantes-Salazar M, Angel-Ambrocio AH, Soto-Acosta R, Bautista-Carbajal P, Hurtado-Monzon AM, Alcaraz-Estrada SL, et al. Dengue virusNS1 protein interacts with the ribosomal protein RPL18: This interactionis required for viral translation and replication in Huh-7 cells. Virology.2015;484:113-26. https://doi.org/10.1016/j.virol.2015.05.017

  35. Duong FHT, Christen V, Berke JM, Penna SH, Moradpour D, HeimMH. Upregulation of protein phosphatase 2Ac by hepatitis C virusmodulates NS3 helicase activity through inhibition of protein argininemethyltransferase 1. J Virol. 2005;79(24):15342-50. https://doi.org/10.1128/JVI.79.24.15342-15350.2005

  36. Agrawal T, Schu P, Medigeshi GR. Adaptor protein complexes-1and 3 are involved at distinct stages of flavivirus life-cycle. Sci Rep.2013;3(1813):1-9. https://doi.org/10.1038/srep01813

  37. Tongmuang N, Yasamut U, Noisakran S, Sreekanth GP, YenchitsomanusP thai, Limjindaporn T. Suppression of μ1 subunit of the adaptor proteincomplex 2 reduces dengue virus release. Virus Genes. 2020;56(1):27-36.https://doi.org/10.1007/s11262-019-01710-x

  38. Krauss M, Kukhtina V, Pechstein A, Haucke V. Stimulation ofphosphatidylinositol kinase type I-mediated phosphatidylinositol(4,5)-bisphosphate synthesis by AP-2μ–cargo complexes. Proc NatlAcad Sci U S A. 2006;103(32):11934-9. https://doi.org/10.1073/pnas.0510306103

  39. Chen Z, Lin X, Zhang Z, Huang J, Fu S, Huang R. EXO70 proteininfluences dengue virus secretion. Microbes Infect. 2011;13(2):143-50.https://doi.org/10.1016/j.micinf.2010.10.011

  40. Duan X, Lu X, Li J, Liu Y. Novel binding between pre-membraneprotein and vacuolar ATPase is required for efficient dengue virussecretion. Biochem Biophys Res Commun. 2008;373(2):319-24. https://doi.org/10.1016/j.bbrc.2008.06.041

  41. Wang JL, Zhang JL, Chen W, Xu XF, Gao N, Fan DY, et al. Roles of smallGTPase RAc1 in the regulation of actin cytoskeleton during dengue virusinfection. PLoS Negl Trop Dis. 2010;4(8):e809. https://doi.org/10.1371/journal.pntd.0000809

  42. Choy MM, Sessions OM, Gubler DJ, Ooi EE. Production of infectiousdengue virus in Aedes aegypti is dependent on the Ubiquitin ProteasomePathway. PLoS Negl Trop Dis. 2015;9(11):1-14. https://doi.org/10.1371/journal.pntd.0004227

  43. Yang CF, Tu CH, Lo YP, Cheng CC, Chen WJ. Involvement of tetraspaninC189 in cell-to-cell spreading of the dengue virus in C6/36 cells.PLoS Negl Trop Dis. 2015;9(7):1-21. https://doi.org/10.1371/journal.pntd.0003885

  44. Vora A, Zhou W, Londono-Renteria B, Woodson M, Sherman MB, ColpittsTM, et al. Arthropod EVs mediate dengue virus transmission throughinteraction with a tetraspanin domain containing glycoprotein Tsp29Fb.Proc Natl Acad Sci U S A. 2018;115(28):E6604-13. https://doi.org/10.1073/pnas.1720125115

  45. Reyes JIL, Suzuki Y, Carvajal T, Muñoz MNM, Watanabe K. Intracellularinteractions between arboviruses and Wolbachia in Aedes aegypti. FrontCell Infect Microbiol. 2021;11(690087):1-15. https://doi.org/10.3389/fcimb.2021.690087

  46. Molina-Cruz A, Gupta L, Richardson J, Bennett K, Black IV W,Barillas-Mury C. Effect of mosquito midgut trypsin activity on dengue-2virus infection and dissemination in Aedes aegypti. Am J Trop Med Hyg.2005;72(5):631-7. https://pubmed.ncbi.nlm.nih.gov/15891140/




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

salud publica mex. 2023;65