medigraphic.com
SPANISH

Revista Electrónica de Psicología Iztacala

  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2022, Number 3

<< Back Next >>

Rev Elec Psic Izt 2022; 25 (3)

The hurst exponent as a parameter for analyzing eeg signals to understand human cognition: a review

Maureira CF
Full text How to cite this article

Language: Spanish
References: 47
Page: 930-948
PDF size: 309.81 Kb.


Key words:

electroencephalography, Hurst exponent, nonlinear systems, chaos theory.

ABSTRACT

The following work is a review of the articles that use the Hurst exponent to analyze electroencephalogram signals. The search was carried out in the Medline/Pubmed and Scopus databases, obtaining a total of 37 articles that met the inclusion criteria (published between 1 January 2000 and 31 December 2019, English or Spanish, research articles and studies on human beings). 64.9% of the work is devoted to the understanding of brain activity at rest or during the resolution of cognitive problems, and 27% to the categorization of signals by software or classification systems. The need for the individual study of brain activity is concluded, since the exponents of Hurst show a very diverse activity between the subjects, even carrying out the same task or subjected to the same interventions.


REFERENCES

  1. Acharya, U., Faust, O., Kannathal, N., Chua, T. y Laxminarayan, S. (2005). Nonlinearanalysis of EEG signals at various sleep stages. Comput MethodsPrograms Biomed, 80(1), 37-45.

  2. Acharya, U., Sree, S., Alvin, A., Yanti, R. y Suri, J. (2012). Application of non-linearand wavelet based features for the automated identification of epileptic EEGsignals. Int J Neural Syst, 22(2), 1250002.

  3. Amezquita-Sanchez, J., Mammone, N., Morabito, F., Marino, S. y Adeli, H. (2019).A novel methodology for automated differential diagnosis of mild cognitiveimpairment and the Alzheimer's disease using EEG signals. J NeurosciMethods, 322, 88-95.

  4. Balli, T. y Palaniappan, R. (2010). Classification of biological signals using linearand nonlinear features. Physiol Meas, 31(7), 903-920.

  5. Barrat, A., Barthelemy, M. y Vespignani, A. (2008). Dynamical processes oncomplex networks. New York: Cambridge University Press.

  6. Canals, M., Olivares, R., Labra, F. y Novoa, F. (2000). Ontogenetic changes in thefractal geometry of the bronchial tree in Rattus norvegicus. Biol Res, 33, 31-35.

  7. Capra, F. (1998). La trama de la vida. Barcelona: Anagrama.

  8. Cerquera, A., Arns, M., Buitrago, E., Gutiérrez, R. y Freund, J. (2012). Nonlineardynamics measures applied to EEG recordings of patients with attentiondeficit/hyperactivity disorder: quantifying the effects of a neurofeedbacktreatment. Conf Proc IEEE Eng Med Biol Soc, 2012, 1057-1060.

  9. Colombo, M., Wei, Y., Ramautar, J., Linkenkaer-Hansen, K., Tagliazucchi, E. yVan Someren, E. (2016). More Severe Insomnia Complaints in People withStronger Long-Range Temporal Correlations in Wake Resting-State EEG.Front Physiol, 7, 576.

  10. Daneshyari, M., Kamkar, L. y Daneshyari, M. (2010). Epileptic EEG: acomprehensive study of nonlinear behavior. Adv Exp Med Biol, 680, 677-683.

  11. Díaz, H., Maureira, F., Cohen, E., Córdova, F., Palominos, F., Otárola, J. y Cañete,L. (2015). Individual differences in the orden/chaos balance of the brain selforganization.Annals of Data Science, 2(4), 421-438.

  12. Díaz, H., Maureira, F. y Córdova, F. (2017). Temporal scaling and inter-individualhemispheric asymmetry of chaos estimation from EEG time series. ProcediaComputer Science, 122, 339-345.

  13. Díaz, H., Maureira, F. y Córdova, F. (2018). Times series of closed and open eyesEEG conditions reveal differential characteristics in the temporality of linearand no-linear analysis domain. Procedia Computer Science, 139, 570-577.

  14. Díaz, H., Maureira, F., Córdova, F. y Palominos, F. (2017). Long-range linearcorrelation and nonlinear chaos estimation differentially characterizesfunctional conectivity and organization of the brain EEG. Procedia ComputerScience, 122, 857-864.

  15. Díaz, H., Maureira, F., Flores, E., Cifuentes, H. y Córdova, F. (2019).Synchronizing oscillatory chaos in the brain. Procedia Computer Science, 162, 982-989.

  16. Díaz, H., Maureira, F., Flores, E. y Córdova, F. (2018). Intra e inter-hemisphericcorrelation of the order/chaos fluctuation in the brain activity during a motorimagination task. Procedia Computer Science, 139, 456-463.

  17. Díaz, H., Maureira, F., Flores, G., Fuentes, I., García, F., Maertens, P., et al.(2018). Moving correlations and chaos in the brain during closed eyes basalconditions. Procedia Computer Science, 139, 473-480.

  18. Díaz, H., Maureira, F., Flores, E., Gárate, E. y Muñoz, S. (2019). Intra and interindividualvariability in the chaotic component and functional connectivity ofthe EEG signal in basal closed eyes condition. Procedia Computer Science,162, 966-973.

  19. Díaz, H., Maureira, F., Otárola, J., Rojas, R., Alarcón, O. y Cañete, L. (2019). EEGBeta band frequency domain evaluation for assessing stress and anxiety inresting, eyes closed, basal conditions. Procedia Computer Science, 162,974-981.

  20. Euler, M., Wiltshire, T., Niermeyer, M. y Butner, J. (2016). Working memoryperformance inversely predicts spontaneous delta and theta-band scalingrelations. Brain Res, 1637, 22-33.

  21. Flores, F., Maureira, F., Díaz, H., Navarro, B., Gavotto, O. y Matheu, A. (2019).Efectos de una sesión de ejercicio físico sobre la actividad neurofisiológicadurante la resolución de una prueba de atención selectiva. Retos, 36, 390-396.

  22. Geng, S., Zhou, W., Yuan, Q., Cai, D. y Zeng, Y. (2011). EEG non-linear featureextraction using correlation dimension and Hurst exponent. Neurol Res,33(9), 908-912.

  23. Goldberger, A., Rigney, D. y West, B. (1990). Chaos and fractals in humanphysiology. Scie Amer, 262(2), 42-49.

  24. Gupta, A., Singh, P. y Karlekar, M. (2018). A novel signal modeling approach forclassification of seizure and seizure-free EEG signals. IEEE Trans NeuralSyst Rehabil Eng, 26(5), 925-935.

  25. Hartley, C., Berthouze, L., Mathieson, S., Boylan, G., Rennie, J., Marlow, N., et al.(2012). Long-range temporal correlations in the EEG bursts of humanpreterm babies. PLoS One, 7(2), e31543.

  26. Ibáñez-Molina, A. y Iglesias-Parro, S. (2014). Fractal dimension of internally andexternally generated conscious percepts. Brain and Cognition, 87, 69-75.

  27. Jausovec, N. y Jausovec, K. (2010). Resting brain activity: differences betweengenders. Neuropsychologia, 48(13), 3918-3925.

  28. Kale, M. y Butar, F. (2011). Fractal analysis of time series and distributionproperties of Hurst exponent. Journal of Mathematical Sciences andMathematics Education, 5, 8-19.

  29. Kannathal, N., Acharya, U., Lim, C. y Sadasivan, P. (2005). Characterization ofEEG-a comparative study. Comput Methods Programs Biomed, 80(1), 17-23.

  30. Kannathal, N., Puthusserypady, S. y Min, L. (2006). Elman neural networks fordynamic modeling of epileptic EEG. Conf Proc IEEE Eng Med Biol Soc,2006, 6145-6148.

  31. Khasnobish, A., Datta, S., Bose, R., Tibarewala, D. y Konar, A. (2017). Analyzingtext recognition from tactually evoked EEG. Cogn Neurodyn, 11(6), 501-513.

  32. Klonowski, W. (2016). Fractal analysis of electroencephalographic time series(EEG Signals). In Di Leva, A. (Ed). The fractal geometry of the brain(pp.413-429). New York: Springer-Verlag.

  33. Lai, M., Lombardo, M., Chakrabarti, B., Sadek, S., Pasco, G., Wheelwright, S., etal. (2010). A shift to randomness of brain oscillations in people with autism.Biol Psychiatry, 68(12), 1092-1099.

  34. Liang, Z., Li, D., Ouyang, G., Wang, Y., Voss, L., Sleigh, J., et al. (2012).Multiscale rescaled range analysis of EEG recordings in sevofluraneanesthesia. Clin Neurophysiol, 123(4), 681-688.

  35. Lorenz, E. (1995). La esencia del Caos. Madrid: Debate.

  36. Madan, S., Srivastava, K., Sharmila, A. y Mahalakshmi, P. (2018). A case study onDiscrete Wavelet Transform based Hurst exponent for epilepsy detection. JMed Eng Technol, 42(1), 9-17.

  37. Maureira, F. (2107). ¿Qué es la inteligencia? Madrid: Bubok.

  38. Munia, T., Haider, A., Schneider, C., Romanick, M. y Fazel-Rezai, R. (2017). Anovel EEG based spectral analysis of persistent brain function alteration inathletes with concussion history. Sci Rep, 7(1), 17221.

  39. Natarajan, K., Acharya, U., Alias, F., Tiboleng, T. y Puthusserypady, S. (2004).Nonlinear analysis of EEG signals at different mental states. Biomed EngOnline, 3(1), 7.

  40. Racz, F., Stylianou, O., Mukli, P. y Eke, A. (2018). Multifractal dynamic functionalconnectivity in the resting-state brain. Front Physiol, 9, 1704.

  41. Rahmani, B., Wong, C., Norouzzadeh, P., Bodurka, J. y McKinney, B. (2018).Dynamical Hurst analysis identifies EEG channel differences between PTSDand healthy controls. PLoS One, 13(7), e0199144.

  42. Stam, J. (2005). Nonlinear analysis of EEG and MEG: A review of an emergingfield. Clinical Neurophysiology,116, 2266-2301.

  43. Subha, D., Joseph, P., Acharya, U. y Lim, C. (2010). EEG signal analysis: asurvey. J Med Syst, 34(2), 195-212.

  44. von Wegner, F., Tagliazucchi, E., Brodbeck, V. y Laufs, H. (2016). Analytical andempirical fluctuation functions of the EEG microstate random walk - Shortrangevs. long-range correlations. Neuroimage, 141, 442-451.

  45. Weiss, B., Clemens, Z., Bódizs, R., Vágó, Z. y Halász, P. (2009). Spatio-temporalanalysis of monofractal and multifractal properties of the human sleep EEG.J Neurosci Methods, 185(1), 116-124.

  46. Yuan, Q., Zhou, W., Li, S. y Cai, D. (2011). Epileptic EEG classification based onextreme learning machine and nonlinear features. Epilepsy Res, 96(1-2),29-38.

  47. Zarjam, P., Epps, J., Lovell, N. y Chen F. (2012). Characterization of memory loadin an arithmetic task using non-linear analysis of EEG signals. Conf ProcIEEE Eng Med Biol Soc, 2012, 3519-3522.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Elec Psic Izt. 2022;25