medigraphic.com
SPANISH

Enfermedades Infecciosas y Microbiología

  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2023, Number 2

<< Back Next >>

Enf Infec Microbiol 2023; 43 (2)

SARS-COV-2: molecular and etiopathogenic aspects

García FW, Villafuerte TI, Mexia AAL
Full text How to cite this article

Language: Spanish
References: 38
Page: 69-73
PDF size: 365.56 Kb.


Key words:

COVID-19, SARS-COV-2, etiopathogenesis, coronavirus infection.

ABSTRACT

In March 2020, the World Health Organization (WHO) declared that the covid-19 outbreak, which began in the city of Wuhan, China, had become a pandemic. SARS-COV-2 induces systemic damage which can lead to multi-organ failure, affecting the functioning of many organs in addition to the lungs. SARS-COV-2 is an RNA virus belonging to the coronavirus family, which receives its name due to the appearance of its coat proteins, its genome is made up of a single chain of ribonucleic acid. This article aims to approach the molecular aspects of SARS-COV-2 and address the etiopathogenic mechanisms that have been postulated in the case of the disease known as COVID-19. Direct cytopathological damage of host cells and dysregulated immune response caused by SARS-COV-2 are hypothesized to be the main mechanisms of this disease. Knowledge about the molecular biology of SARS-COV-2 and the mechanisms by which this agent causes systemic damage are essential to understand COVID-19 therapy.


REFERENCES

  1. Zhu, N., Zhang, D., Wang, W. et al., “A novel coronavirusfrom patients with pneumonia in China, 2019”, NEngl J Med, 2020, 382 (8): 727-733. doi: 10.1056/NEJMoa2001017.

  2. Chen, Y., Liu, Q. y Guo, D., “Emerging coronaviruses: genomestructure, replication, and pathogenesis”, J MedVirol, 2020, 92 (4): 418-423. doi: 10.1002/jmv.25681. [Correcciónpublicada en J Med Virol, 2 de agosto de 2020.]

  3. Ali, R., Shamsah, A., Shafiul, H., Ranjit, S., Ruchi, T., Yashpal,M., Kuldeep, D., Iqbal, Y., Bonilla-Aldana, K. y Rodríguez-Morales, A., “sars-cov-2, sars-cov, and mers-cov:a comparative overview”, Infez Med, 2020, 2: 174-184.

  4. Van Boheemen, S. et al., “Genomic characterization ofa newly discovered coronavirus associated with acuterespiratory distress syndrome in humans”, mBio, 2023,(6): e00473-12. doi:10.1128/mBio.00473-12.

  5. Jin, Y., Yang, H., Ji, W. et al., “Virology, epidemiology,pathogenesis, and control of covid-19”, Viruses, 2020, 12(4): 372. doi: 10.3390/v12040372.

  6. Liu, K., Fang, Y.Y., Deng, Y., Liu, W., Wang, M.F., Ma,J.P., Xiao W. et al., “Clinical characteristics of novelcoronavirus cases in tertiary hospitals in Hubei Province”,Chin Med J, 2020, 133: 1025-1031. doi: 10.1097/CM9.0000000000000744.

  7. Luo, X. Zhang, H. Xu, don’t overlook digestive symptomsin patients with 2019 novel coronavirus disease(covid-19), Clin. Gastroenterol. Hepatol.18 (2020) 1636–1637.doi: 10.1016/j.sch.2020.03.043

  8. Dong, M., Zhang, J., Ma, X., Tan, J., Chen, L., Liu, S., Xin,Y. y Zhuang, L., “ace2, tmprss2 distribution and ex- 26trapulmonary organ injury in patients with covid-19”, BiomedPharmacother, 2020, 131: 110678. doi: 10.1016/j.biopha.2020.110678.

  9. Hamming, I., Cooper, M.E., Haagmans, B.L., Hooper,N.M., Korstanje, R., Osterhaus, A.D., Timens, W. et al.,“The emerging role of ace2 in physiology and disease”, JPathol, 2007, 212: 1-11. doi:10.1002/path.2162.

  10. Lan, J., Ge, J., Yu, S., Shan, H., Zhou, S., Fan, Q., Zhanget al., “Structure of the sars-cov-2 spike receptor-bindingdomain bound to the ace2 receptor”, Nature, 2020, 581:215–220. doi:10.1038/s41586-020-2180-5.

  11. Hoffman et al., “sars-cov-2 cell entry depends on ace2and tmprss2 and is blocked by a clinically proven proteaseinhibitor”, Cell, 2020, 181 (2): 271-280.e8. doi:10.1016/j.cell.2020.02.052.

  12. Sungnak, W., Huang, N., B’ecavin, C., Berg, M., Queen,R., Litvinukova, M., Talavera-López, C. et al., “sars-cov-2entry factors are highly expressed in nasal epithelial cellstogether with innate immune genes, Nat Med, 2020, 26.doi: 10.1038/s41591-020-0868-6.pmcid: pmc8637938.

  13. Zhou, L., Niu. Z., Jiang, X., Zhang, Z., Zheng, Y., Wang, Z.,Zhu, Y. et al., “Systemic analysis of tissue cells potentiallyvulnerable to sars-cov-2 infection by the protein-proofedsingle-cell rna profiling of ace2, tmprss2 and furin proteases,BioRxiv, 2020. 2004.2006. 028522.pmc7591870

  14. Cantuti-Castelvetri, L., Ojha, R., Pedro, L.D., Djannatian,M., Franz, J., Kuivanen, S., Van der Meer, F., Kallio, K., Kaya,T., Anastasina, M., Smura, T., Levanov, L., Szirovicza, L.,Tobi, A., Kallio-Kokko, H., Österlund, P., Joensuu, M., Meunier,F.A., Butcher, S.J., Winkler, M.S., Mollenhauer, B., Helenius,A., Gokce, O., Teesalu, T., Hepojoki, J., Vapalahti, O.,Stadelmann, C., Balistreri, G. y Simons, M., “Neuropilin-1facilitates sars-cov-2 cell entry and infectivity”, Science,2020: eabd2985.27. doi:10.1126/science. abd2985.

  15. Hikmet, F., Méar, L., Edvinsson, Å., Micke, P., Uhlén, M.y Lindskog, C., “The protein expression profile of ace2in human tissues”, Mol Syst Biol, 2020, 16:e9610. doi:10.15252/msb.20209610.pmcid: pmc7383091.

  16. Ghez, D., Lepelletier, Y., Lambert, S., Fourneau, J.-M.,Blot, V., Janvier, S., Arnulf, B., Van Endert, P.M., Heveker,N., Pique, C. y Hermine, O., “Neuropilin-1 is involved inhuman t-cell lymphotropic virus type 1 entry”, J Virol,2006, 80: 6844-6854. doi: 10.1128/JVI.02719-05.

  17. Coutard, B., Valle, C., De Lamballerie, X., Canard, B., Seidah,N.G. y Decroly, E., “The spike glycoprotein of thenew coronavirus 2019-ncov contains a furin-like cleavagesite absent in cov of the same clade”, Antiviral Res,2020, 176: 104742. doi: 10.1016/j.antiviral.2020.104742.pmcid: pmc7114094.

  18. Li, H. et al., “sars-cov-2 and viral sepsis: observationsand hypotheses”, Lancet, 2020, 395: 1517-1520.doi:10.1016/S0140-6736(20)30920-X.

  19. Cao, W. y Li, T., “covid-19: towards understanding of pathogenesis”,Cell Res, 2020, 30: 367-369. doi: 10.1038/s41422-020-0327.

  20. Puelles, V.G. et al., “Multiorgan and renal tropism ofsars-cov-2”, N Engl J Med, 2020, 383 (6): 590-592.doi:10.1056/NEJMc2011400.

  21. Wang, W. et al., “Detection of sars-cov-2 in differenttypes of clinical specimens”, J Am Med Assoc, 2020,323: 1843-1844. doi: 10.1001/jama.2020.3786.

  22. Su, H. et al., “Renal histopathological analysis of 26postmortem findings of patients with covid-19 in China”,Kidney Int, 2020, 98 (1): 219-227. doi: 10.1016/j.kint2020.04.003.pmcid: pmc7194105.

  23. Tavazzi, G. et al., “Myocardial localization of coronavirusin covid-19 cardiogenic shock”, Eur J Heart Fail, 2020,22: 911-915. doi: 10.1002/ejhf.1828.

  24. Xiao, F. et al., “Evidence for gastrointestinal infection ofsars-cov-2”, Gastroenterology, 2020, 158: 1831-1833.e3.doi: 10.1053/j.gastro.2020.02.055.

  25. Qi, F., Qian, S., Zhang, S. y Zhang, Z., “Single cell rnasequencing of 13 human tissues identify cell types andreceptors of human coronaviruses”, Biochem BiophysRes Commun, 2020, 526: 135-140. doi: 10.1016/j.bbrc.2020.03.044.

  26. Ziegler, C.G.K. et al., “sars-cov-2 receptor ace2 is an interferon-stimulated gene in human airway epithelialcells and is detected in specific cell subsets acrosstissues”, Cell, 2020, 181: 1016-1035.e19. doi: 10.1016/j.cell.2020.04.035.

  27. Gupta, A., Madhavan, M.V., Sehgal, K. et al., “Extrapulmonarymanifestations of covid-19”, Nat Med, 2020, 26,1017-1032. doi: 10.1038/s41591-020-0968-3.

  28. Tang, N., Li, D., Wang, X., Sun, Z., “Abnormal coagulationparameters are associated with poor prognosis inpatients with novel coronavirus pneumonia”, J ThrombHaemost, 2020, 18: 844-847. doi:10.1111/jth.14768.

  29. Helms, J., Tacquard, C., Severac, F., Leonard-Lorant, I.,Ohana, M., Delabranche, X. et al., “High risk of thrombosisin severe sars-cov-infection: a multicenter prospectivecohort study”, Intensive Care Med, 2020, 46 (6):1089-1098. doi: 10.1007/s00134-020-06062-x.

  30. Bikdeli, B., Madhavan, M.V., Jiménez, D., Chuich, T.,Dreyfus, I., Driggin, E. et al., “covid-19 and thromboticor thromboembolic disease: implications for prevention,antithrombotic therapy, and follow-up”, J AmColl Cardiol, 2020, 75 (23): 2950-2973. doi: 10.1016/j.jacc.2020.04.031.

  31. Páramo, J.A., “Respuesta inflamatoria en relación concovid-19 y otros fenotipos protrombóticos”, ReumatolClin, 2020, 18 (1): 1-4. doi: 10.1016/j.reuma.2020.06.004.

  32. Vaduganathan, M. et al., “Renin-angiotensin-aldosteronesystem inhibitors in patients with covid-19”, NEngl J Med, 2020, 382: 1653-1659. doi: 10.1056/nejmsr2005760.

  33. Ye, M. et al., “Glomerular localization and expressionof angiotensin-converting enzyme 2 and angiotensin-converting enzyme: implications for albuminuriain diabetes”, J Am Soc Nephrol, 2006, 17: 3067-3075.doi:10.1681/ASN.2006050423.

  34. Strawn, W.B., Ferrario, C.M. y Tallant, E.A., “Angiotensin-(1-7) reduces smooth muscle growth after vascularinjury”, Hypertension, 1999, 33, 207-211. doi:10.1161/01.hyp.33.1.207.

  35. Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y. etal., “Clinical features of patients infected with 2019novel coronavirus in Wuhan, China”, Lancet, 2020, 395(10223): 497-506. doi: 10.1016/S0140-6736(20)30183-5.

  36. Wan, S., Yi, Q., Fan, S., Li, J., Zhang, X., Guo, L. et al.,“Characteristics of lymphocyte subsets and cytokinesin peripheral blood of 123 hospitalized patients with2019 novel coronavirus pneumonia (ncp)”, 2020. doi:2020.02.10.20021832.

  37. Tisoncik, J.R., Korth, M.J., Simmons, C.P., Farrar, J.,Martin, T.R. y Katze, M.G., “Into the eye of the cytokinestorm”, Microbiol Mol Biol Rev, 2012, 76 (1): 16-32. doi:10.1128/mmbr.05015-11.

  38. Mehta, P., McAuley, D.F., Brown, M., Sánchez, E., Tattersall,R.S. y Manson, J.J., “hlh across speciality collaboration,UK. covid-19: consider cytokine storm syndromesand immunosuppression”, Lancet, 2020, 395 (10229):1033-1034. doi:10.1016/S0140-6736(20)30628-0.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Enf Infec Microbiol. 2023;43