medigraphic.com
SPANISH

TIP Revista Especializada en Ciencias Químico-Biológicas

ISSN 2395-8723 (Electronic)
ISSN 1405-888X (Print)
TIP Revista Especializada en Ciencias Químico-Biológicas
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2022, Number 1

<< Back Next >>

TIP Rev Esp Cienc Quim Biol 2022; 25 (1)

Challenge and opportunities in the recovery of high value biological and functional proteins and peptides- A review

Santiaguín-Padilla AJ, Cadena-Cadena F, Arias-Moscoso JL, Meza-Ochoa AR, Torres-Velázquez JR, Reynaga-Franco FJ, Cuevas-Acuña DA, Garzón-García AM
Full text How to cite this article

Language: Spanish
References: 94
Page: 1-16
PDF size: 287.47 Kb.


Key words:

wastewater, bioactive compounds, protein recover.

ABSTRACT

Wastewater from canning or fishmeal industries is considered a good source of several chemical compounds. To reduce the negative impact of these effluents on the marine ecosystems different techniques have been developed to remove solids, as well as to recover nutrients, like proteins, which can be employed in industries like food, agrochemical, or pharmaceutical. These proteins can be concentrated by ultrafiltration and nanofiltration systems. This methodology allows proteins with better nutrition quality and biological activities. This review examined and discussed several treatment technologies applied to recover solids from the canning and fishmeal industries, also the opportunity for the extraction of chemical compounds. Highlight in discussion the potential applications of the ultrafiltration on recovering functional and biological proteins from wastewater fish industries.


REFERENCES

  1. Achour, M., Khelifi, O., Bouazizi, I. & Hamdi, M. (2000).Design of an integrated bioprocess for the treatment oftuna processing liquid effluents. Process Biochemistry,35(9), 1013–1017. https://doi.org/10.1016/S0032-9592(00)00133-3

  2. Afonso, M. D. & Bórquez, R. (2003). Nanofiltration ofwastewaters from the fish meal industry. Desalination,151(2), 131–138. https://doi.org/10.1016/S0011-9164(02)00991-8

  3. Afonso, M. D., Ferrer, J. & Bórquez, R. (2004). An economicassessment of proteins recovery from fish meal effluentsby ultrafiltration. Trends in Food Science & Technology,15(10), 506–512. https://doi.org/10.1016/j.tifs.2004.02.008

  4. Ahuja, I., Dauksas, E., Remme, J. F., Richardsen, R. & Løes,A.-K. (2020). Fish and fish waste-based fertilizers inorganic farming – With status in Norway: A review. WasteManagement, 115, 95–112. https://www.sciencedirect.com/science/article/pii/S0956053X20303913

  5. Aksnes, A., Hope, B., Jönsson, E., Björnsson, B. T. & Albrektsen,S. (2006). Size-fractionated fish hydrolysate as feedingredient for rainbow trout (Oncorhynchus mykiss) fedhigh plant protein diets. I: Growth, growth regulation andfeed utilization. Aquaculture, 261(1), 305–317. https://doi.org/10.1016/j.aquaculture.2006.07.025

  6. Amado, I. R., González, M. P., Murado, M. A. & Vázquez, J.A. (2016). Shrimp wastewater as a source of astaxanthinand bioactive peptides. Journal of Chemical Technology&Biotechnology, 91(3), 793–805. https://doi.org/10.1002/jctb.4647

  7. Amado, I. R., Vázquez, J. A., González, M. P. & Murado, M.A. (2013). Production of antihypertensive and antioxidantactivities by enzymatic hydrolysis of protein concentratesrecovered by ultrafiltration from cuttlefish processingwastewaters. Biochemical EngineeringJournal, 76, 43–54.https://doi.org/10.1016/j.bej.2013.04.009

  8. Arias-Lizárraga, D. M. & Méndez-Gómez, E. (2014). Remociónde sólidos en aguas residuales de la industria harinera depescado empleando biopolímeros. Tecnología y Cienciasdel Agua, 5(3), 115-123.

  9. Bechtel, P. J. (2005). Properties of stickwater from fish processingbyproducts. Journal of Aquatic Food Product Technology,14(2), 25–38. https://doi.org/10.1300/J030v14n02_03

  10. Bourseau, P., Massé, A., Cros, S., Vandanjon, L. & Jaouen,P. (2014). Recovery of aroma compounds from seafoodcooking juices by membrane processes. Journal of FoodEngineering, 128, 157–166. https://doi.org/10.1016/j.jfoodeng.2013.12.014

  11. Brod, E., Oppen, J., Kristoffersen, A. Ø., Haraldsen, T. K. &Krogstad, T. (2017). Drying or anaerobic digestion offish sludge: Nitrogen fertilisation effects and logistics.Ambio, 46(8), 852–864. https://doi.org/10.1007/s13280-017-0927-5

  12. Cadena-Cadena, F., Cuevas-Acuña, D. A., Reynaga-Franco,F. de J., Rodríguez-Felix, G., Núñez-Ruiz, M. del S.,Higuera-Barraza, O. A. & Arias-Moscoso, J. L. (2022).Effect of Ultrasonic Pulses on the Functional Propertiesof Stickwater. Applied Sciences, 12(3), 1351. https://doi.org/10.3390/app12031351

  13. Cáceres, M. D. J. G. (2012). Aspectos medioambientalesasociados a los procesos de la industria láctea. Mundopecuario, 8(1), 16-32.

  14. Castillo, P. F., Rao, R. M. & Liuzzo, J. A. (1987). Potentialof acid activated clays in the clarification of menhadenstickwater. Journal of Environmental Science & HealthPart B, 22(4), 471–489.

  15. Castro, O. N., Álvarez, J., Gómez, O. T. & López, J. L. (2020).Recuperación de proteínas del efluente “agua de cola” dela industria de harina de pescado con quitosano calcáreo.Revista Iberoamericana de Polímeros, 21(2), 41–50.

  16. Chalamaiah, M., Hemalatha, R. & Jyothirmayi, T. (2012).Fish protein hydrolysates: proximate composition, aminoacid composition, antioxidant activities and applications:a review. Food Chemistry, 135(4), 3020–3038. https://doi.org/10.1016/j.foodchem.2012.06.100

  17. Chowdhury, P., Viraraghavan, T. & Srinivasan, A. (2010).Biological treatment processes for fish processingwastewater–A review. Bioresource Technology, 101(2),439–449. https://doi.org/10.1016/j.biortech.2009.08.065

  18. Cristóvao, R. O., Botelho, C. M., Martins, R. J. E., Loureiro,J. M. & Boaventura, R. A. R. (2015a). Fish canningindustry wastewater treatment for water reuse–a case study.Journal of Cleaner Production, 87, 603–612. https://doi.org/10.1016/j.jclepro.2014.10.076

  19. Cristóvao, R. O., Gonçalves, C., Botelho, C. M., Martins, R.J. E., Loureiro, J. M. & Boaventura, R. A. R. (2015b).Fish canning wastewater treatment by activated sludge:application of factorial design optimization: Biologicaltreatment by activated sludge of fish canning wastewater.Water Resources and Industry, 10, 29–38. https://doi.org/10.1016/j.wri.2015.03.001

  20. Del Valle, J. M. & Aguilera, J. M. (1991). Physicochemicalcharacterisation of raw fish and stickwater from fish mealproduction. Journal of the Science of Food and Agriculture,54(3), 429–441. https://doi.org/10.1002/jsfa.2740540314

  21. Dumay, J., Radier, S., Barnathan, G., Bergé, J.-P. & Jaouen,P. (2008). Recovery of valuable soluble compoundsfrom washing waters generated during small fattypelagic surimi processing by membrane processes.Environmental Technology, 29(4), 451–461. https://doi.org/10.1080/09593330801983912

  22. Elmaslar Özbaş, E., Akın, Ö., Güneysu, S., Özcan, H. K. &Öngen, A. (2022). Changes occurring in consumptionhabits of people during COVID-19 pandemic andthe water footprint. Environment, Development andSustainability, 24(6), 8504-8520. https://doi.org/10.1007/s10668-021-01797-z

  23. Espe, M., Lemme, A., Petri, A. & El-Mowafi, A. (2006). CanAtlantic salmon (Salmo salar) grow on diets devoid offish meal? Aquaculture, 255(1–4), 255–262. https://doi.org/10.1016/j.aquaculture.2005.12.030

  24. FAO. (2018). El estado mundial de la pesca y la acuicultura.Cumplir los objetivos de desarrollo sostenible. Roma.Licencia: CC BY-NC-SA 3.0 IGO.. García-Sandá, E., Prieto, F. O. & Lema, J. M. (2004). Desarrollode tecnologías limpias en la industria conservera deproductos marinos. Alimentación, Equipos y Tecnología,23(191), 60–65.

  25. Garcia-Sifuentes, C. O., Aguilar, R. P. & Carvallo-Ruiz G.(2011). Stickwater multi-step treatment: effect on organicmaterial removal. Revista de Ciencias Biológicas y de LaSalud, XIII, 10–16.

  26. García-Sifuentes, C. O., Pacheco-Aguilar, R., Carvallo-Ruiz,G., Lugo-Sánchez, M. E. & García-Sánchez, G. (2014).Aproximación experimental al tratamiento de agua de cola.Revista de Ciencias Biológicas y de La Salud, 16(1), 26–31.

  27. Garcia-Sifuentes, C., Pacheco-Aguilar, R., Lugo-Sánchez,M., Garcia-Sánchez, G., Ramirez-Suarez, J. C. & Garcia-Carreno, F. (2009a). Properties of recovered solids fromstick-water treated by centrifugation and pH shift. FoodChemistry, 114(1), 197–203. https://doi.org/10.1016/j.foodchem.2008.09.064

  28. García-Sifuentes, C. O., Pacheco-Aguilar, R., Valdez-Hurtado, S., Márquez-Rios, E., Lugo-Sánchez, M. E. &Ezquerra-Brauer, J. M. (2009b). Impacto del agua de colade la industria pesquera: tratamientos y usos Impact ofstickwater produced by the fishery industry: treatmentand uses. CyTA–Journal of Food, 7(1), 67–77. https://doi.org/10.1080/11358120902850412

  29. Genovese, C. V. & González, J. F. (1998). Solids removal bycoagulation from fisheries waste waters. Water Sa-Pretoria-,24, 371–372.

  30. Gildberg, A. (2004). Digestive enzyme activities in starved preslaughterfarmed and wild-captured, Atlantic cod (Gadusmorhua). Aquaculture, 238(1), 343–353.

  31. Gómez, G. del C. J., Lara, L. M. & Valenzuela, M. M. (2022).Categorización de residuos de pescado para la elaboraciónde subproductos de valor agregado. Revista Ingeniantes,9(1), 1.

  32. Goycoolea, F. M., Nieblas, J. M., Noriega, L. O. & Higuera-Ciapara, I. (1997). Temperature and concentrationeffects on the flow behaviour of stickwater. BioresourceTechnology, 59(2–3), 217–225. https://doi.org/10.1016/S0960-8524(96)00145-9

  33. Graciano-Verdugo, A., Maldonado Arce, A., Villalba Villalba,A., Burgos Hernández, A., Otero León, C., CanizalesRodríguez, D., Cuevas Acuña, D. & Ezquerra Brauer,J, (2014). Química, bioquímica y estructura de lossubproductos de la pesca. Hermosillo, Mexico: Universidadde Sonora

  34. Gringer, N., Osman, A., Nielsen, H. H., Undeland, I. & Baron,C. P. (2014). Chemical characterization, antioxidant andenzymatic activity of brines from Scandinavian marinatedherring products. Journal of Food Processing & Technology,5(346), 1000346. DOI:10.4172/2157-7110.1000346

  35. Gringer, N., Safafar, H., Du Mesnildot, A., Nielsen, H. H.,Rogowska-Wrzesinska, A., Undeland, I. & Baron, C. P.(2016). Antioxidative low molecular weight compoundsin marinated herring (Clupea harengus) salt brine. FoodChemistry, 194, 1164–1171. https://doi.org/10.1016/j.foodchem.2015.08.121

  36. Guerrero, L., Omil, F., Mendez, R. & Lema, J. M. (1998).Protein recovery during the overall treatment of wastewatersfrom fish-meal factories. Bioresource Technology, 63(3),221–229. https://doi.org/10.1016/S0960-8524(97)00140-5

  37. Hadizadeh, Z., Mehrgan, M. S. & Shekarabi, S. P. H. (2020).The potential use of stickwater from a kilka fishmeal plantin Dunaliella salina cultivation. Environmental Scienceand Pollution Research, 27(2), 2144-2154. https://doi.org/10.1007/s11356-019-06926-w

  38. Hertrampf, J. W. & Piedad-Pascual, F. (2000). Fish solubles(de-hydrated). In Handbook on ingredients for aquaculturefeeds. Springer, 8, 211–216. https://doi.org/10.1007/978-94-011-4018-8_21

  39. Hsu, K.-C., Lu, G.-H. & Jao, C.-L. (2009). Antioxidativeproperties of peptides prepared from tuna cooking juicehydrolysates with orientase (Bacillus subtilis). FoodResearch International, 42(5–6), 647–652. https://doi.org/10.1016/j.foodres.2009.02.014

  40. Hulan, H. W., Proudfoot, F. G. & Zarkadas, C. G. (1987). Theeffect of adding white fish meal containing enzyme digestedor untreated stickwater solids to diets for broiler chickens.Animal Feed Science and Technology, 16(4), 253–259.https://doi.org/10.1016/0377-8401(87)90014-9

  41. Hung, C.-C., Yang, Y.-H., Kuo, P.-F. & Hsu, K.-C. (2014).Protein hydrolysates from tuna cooking juice inhibit cellgrowth and induce apoptosis of human breast cancer cellline MCF-7. Journal of Functional Foods, 11, 563–570.Retrieved from http://www.sciencedirect.com/science/article/pii/S1756464614002746

  42. Jacobsen, F. (1985). Effect of enzymatic treatment of stickwateron evaporator capacity and fouling. Process Biochemistry,20(4), 103–108.

  43. Jaouen, P. & Quéméneur, F. (1992). Membrane filtration forwaste-water protein recovery. London: Fish ProcessingTecnology, 1(1), 213-245.

  44. Jones, A. M. (2017). Evaluating the effects of specialtyprotein sources on nursery pig performance. Kansas StateUniversity 1-24

  45. Kousoulaki, K., Albrektsen, S., Langmyhr, E., Olsen, H. J.,Campbell, P. & Aksnes, A. (2009). The water solublefraction in fish meal (stickwater) stimulates growthin Atlantic salmon (Salmo salar L.) given high plantprotein diets. Aquaculture, 289(1–2), 74–83. 10.1016/j.aquaculture.2008.12.034

  46. Lanari, D. & Franci, C. (1998). Biogas production from solidwastes removed from fish farm effluents. Aquatic LivingResources, 11(4), 289–295. https://doi.org/10.1016/S0990-7440(98)80014-4

  47. Leal, J. C. M., Panta, C. A. C., Ferrín, A. I. V., Cabo, P. A.G. & Rodríguez, L. M. Z. (2015). Tratamiento de aguasresiduales de una industria procesadora de pescado enreactores anaeróbicos discontinuos. Ciencia e IngenieriaNeogranadina, 25(1), 27–42.

  48. Lin, T. M., Park, J. W. & Morrissey, M. T. (1995). Recoveredprotein and reconditioned water from surimi processingwaste. Journal of Food Science, 60(1), 4–9. https://doi.org/10.1111/j.1365-2621.1995.tb05594.x

  49. Lira, M,T. (2015). Impacto de la hipertensión arterial comofactor de riesgo cardiovascular. Revista Médica ClínicaLos Condes, 26(2), 156–163. https://doi.org/10.1016/j.rmclc.2015.04.004

  50. Liu, S. X. (2008). Food and agricultural wastewater utilizationand treatment. John Wiley & Sons., 51-110

  51. Lomas, P. L., Martín, B., Louit, C., Montoya, D., Montes, C.& Álvarez, S. (2005). Guía práctica para la valoracióneconómica de los bienes y servicios ambientales de losecosistemas. Fundación Interuniversitaria FernandaGonzález Bernáldez. España. 13-31

  52. Lucas, S. M. & García, R. S. (2018). El agua en la industriaalimentaria. Boletín de La Sociedad Española de HidrologíaMédica, 33(2), 157–171. DOI: 10.23853/bsehm.2018.0571

  53. Mahdabi, M. & Hosseini Shekarabi, S. P. (2018). A comparativestudy on some functional and antioxidant properties ofkilka meat, fishmeal, and stickwater protein hydrolysates.Journal of Aquatic Food Product Technology, 27(7), 844–858. https://doi.org/10.1080/10498850.2018.1500503

  54. Mameri, N., Abdessemed, D., Belhocine, D., Lounici, H.,Gavach, C., Sandeaux, J. & Sandeaux, R. (1996). Treatmentof fishery washing water by ultrafiltration. Journal ofChemical Technology & Biotechnology: InternationalResearch in Process, Environmental AND Clean Technology,67(2), 169–175. https://doi.org/10.1002/(SICI)1097-4660(199610)67:2<169::AID-JCTB537>3.0.CO;2-1

  55. Martínez-Montaño, E., Osuna-Ruíz, I., Benítez-García, I.,Osuna, C. O., Pacheco-Aguilar, R., Navarro-Peraza, R. S.& Salazar-Leyva, J. A. (2021). Biochemical and antioxidantproperties of recovered solids with pH shift from fisheryeffluents (sardine stickwater and tuna cooking water). Wasteand Biomass Valorization, 12(4), 1901–1913. https://doi.org/10.1007/s12649-020-01147-6

  56. Massé, A., Vandanjon, L., Jaouen, P., Dumay, E., Kechaou, E.& Bourseau, P. (2008). Upgrading and pollution reductionof fish industry process-waters by membrane technology,Chapter 4. In Added Value to Fisheries Wastes. ResearchSignpost–India Publishers, Transworld Research Network-Kerala, 81(99), 575-595.

  57. Miles, R. D. & Chapman, F. A. (2006). The benefits of fishmeal in aquaculture diets. IFAS Extension, University ofFlorida, 1–7.

  58. Nilsang, S., Lertsiri, S., Suphantharika, M. & Assavanig, A.(2005). Optimization of enzymatic hydrolysis of fish solubleconcentrate by commercial proteases. Journal of FoodEngineering, 70(4), 571–578. https://doi.org/10.1016/j.jfoodeng.2004.10.011

  59. Nunes, S. P., Culfaz-Emecen, P. Z., Ramon, G. Z., Visser, T.,Koops, G. H., Jin, W. & Ulbricht, M. (2020). Thinkingthe future of membranes: Perspectives for advanced andnew membrane materials and manufacturing processes.Journal of Membrane Science, 598, 117761. https://doi.org/10.1016/j.memsci.2019.117761

  60. Pacheco-Aguilar, R., de la Barca, A. M., Castillo-Yañez, F. J.,Marquéz-Ríos, E., García-Carreño, F. L. & Valdez-Hurtado,S. (2018). Comparación del efecto de dos tratamientosenzimáticos con actividad colagenasa y una centrifugacióncomplementaria en las características fisicoquímicas delagua de cola generada por la industria sardinera. Biotecnia,20(3), 58–64.

  61. Pacheco-Aguilar, R., Soto, P. L., Ruiz, G. C., Carreño, L. F.G. & Ríos, E. M. (2009). Efecto de la concentración dequitosano y pH sobre la remoción de sólidos en agua decola de la industria sardinera. Interciencia, 34(4), 274–279.

  62. Parvathy, U., Jeyakumari, K. H. R. A. & Zynudheen, A. A.(2017). Biological treatment systems for fish processingwastewater-A review. Nature Environment and PollutionTechnology, 16, 2, 44-453

  63. Pedreño, J. N., Herrero, J. M., Lucas, I. G. & Beneyto, J. M.(1995). Residuos orgánicos y agricultura. Universidad deAlicante. 27-95.

  64. Pérez-Santín, E., Calvo, M. M., López-Caballero, M. E.,Montero, P. & Gómez-Guillén, M. C. (2013). Compositionalproperties and bioactive potential of waste material fromshrimp cooking juice. LWT-Food Science and Technology,54(1), 87–94. https://doi.org/10.1016/j.lwt.2013.05.038

  65. Radziemska, M., Vaverková, M. D., Adamcová, D., Brtnický,M. & Mazur, Z. (2019). Valorization of fish waste compostas a fertilizer for agricultural use. Waste and BiomassValorization, 10(9), 2537–2545. https://doi.org/10.1007/s12649-018-0288-8

  66. Rahman, S., Islam, A., Hassan, M. I., Kim, J. & Ahmad, F.(2019). Unfoldness of the denatured state of proteinsdetermines urea: Methylamine counteraction in terms ofGibbs free energy of stabilization. International. Journalof Biological Macromolecules, 132, 666–676. Retrievedfrom http://www.sciencedirect.com/science/article/pii/S0141813019306014

  67. Ramírez-Duarte, W. F., Jin, J., Kurobe, T. & Teh, S. J. (2016).Effects of prolonged exposure to low pH on enzymatic andnon-enzymatic antioxidants in Japanese Medaka (Oryziaslatipes). Science of The Total Environment, 568, 26–32.Retrieved from http://www.sciencedirect.com/science/article/pii/S0048969716311160

  68. Rustad, T., Storrø, I. & Slizyte, R. (2011). Possibilities for theutilisation of marine by‐products. International Journal ofFood Science & Technology, 46(10), 2001–2014. https://doi.org/10.1111/j.1365-2621.2011.02736.x

  69. Saidi, S., Saoudi, M. & Amar, R. Ben. (2018). Valorisation oftuna processing waste biomass: isolation, purification andcharacterisation of four novel antioxidant peptides fromtuna by-product hydrolysate. Environmental Science andPollution Research, 25(18), 17383–17392. DOI https://doi.org/10.1007/s11356-018-1809-5

  70. Sathivel, S. & Bechtel, P. J. (2006). Properties of solubleprotein powders from Alaska pollock (Theragrachalcogramma). International Journal of Food Science &Technology, 41(5), 520–529. https://doi.org/10.1111/j.1365-2621.2005.01101.x

  71. Sathivel, S., Bechtel, P. J., Babbitt, J., Smiley, S., Crapo, C.,Reppond, K. D. & Prinyawiwatkul, W. (2003). Biochemicaland functional properties of herring (Clupea harengus)byproduct hydrolysates. Journal of Food Science, 68(7),2196–2200. https://doi.org/10.1111/j.1365-2621.2003.tb05746.x

  72. Sharma, B., Sarkar, A., Singh, P. & Singh, R. P. (2017).Agricultural utilization of biosolids: A review on potentialeffects on soil and plant grown. Waste Management, 64,117–132. Retrieved from https://www.sciencedirect.com/science/article/pii/S0956053X17301125

  73. Shavandi, A., Hu, Z., Teh, S., Zhao, J., Carne, A., Bekhit, A.& Bekhit, A. E.-D. A. (2017). Antioxidant and functionalproperties of protein hydrolysates obtained from squid penchitosan extraction effluent. Food Chemistry, 227, 194–201.https://doi.org/10.1016/j.foodchem.2017.01.099

  74. Shi, W., Healy, M. G., Ashekuzzaman, S. M., Daly, K., Leahy,J. J. & Fenton, O. (2021). Dairy processing sludge and coproducts:A review of present and future re-use pathways inagriculture. Journal of Cleaner Production, 314, 128035.https://doi.org/10.1016/j.jclepro.2021.128035

  75. Shi, Y., Zhong, L., Ma, X., Liu, Y., Tang, T. & Hu, Y. (2019).Effect of replacing fishmeal with stickwater hydrolysateon the growth, serum biochemical indexes, immuneindexes, intestinal histology and microbiota of rice fieldeel (Monopterus albus). Aquaculture Reports, 15, 100223.Retrieved from http://www.sciencedirect.com/science/article/pii/S2352513419301255

  76. Shoushtarian, F. & Negahban-Azar M. (2020). WorldwideRegulations and Guidelines for Agricultural Water Reuse:A Critical Review, Water, 12, 971. https://doi.org/10.3390/w12040971

  77. Shukla, R., Mazahir, F., Chaturvedi, D. & Agarwal, V. (2020).Application of Membrane Processing Techniques inWastewater Treatment for Food Industry. In Applicationsof Membrane Technology for Food Processing Industries.CRC Press. 229–253.

  78. Stepnowski, P., Olafsson, G., Helgason, H. & Jastorff, B. (2004).Recovery of astaxanthin from seafood wastewater utilizingfish scales waste. Chemosphere, 54(3), 413–417. https://doi.org/10.1016/S0045-6535(03)00718-5

  79. Stine, J. J., Pedersen, L., Smiley, S. & Bechtel, P. J. (2012).Recovery and utilization of protein derived from surimiwash‐water. Journal of Food Quality, 35(1), 43–50. https://doi.org/10.1111/j.1745-4557.2011.00424.x

  80. Szymczak, M., Felisiak, K. & Szymczak, B. (2018).Characteristics of herring marinated in reused brines aftermicrofiltration. Journal of Food Science and Technology,55(11), 4395–4405. https://doi.org/10.1007/s13197-018-3343-3

  81. Tacharatanamanee, R., Cherdrungsi, K. & Youravong, W.(2004). Fractionation of proteins in surimi waste waterusing membrane filtration. Jurnal Teknologi, 41(1), 1–10.https://doi.org/10.11113/jt.v41.713

  82. Taheri, A., Farvin, K. H. S., Jacobsen, C. & Baron, C. P. (2014).Antioxidant activities and functional properties of proteinand peptide fractions isolated from salted herring brine.Food Chemistry, 142, 318–326. https://doi.org/10.1016/j.foodchem.2013.06.113

  83. Valdez-Hurtado, S., Goycolea-Valencia, F. & Márquez-Ríos,E. (2018). Efecto de una centrifugación complementariaen la composición química y reológica del agua de cola.Biotecnia, 20(2), 95–103.

  84. Vázquez-Burgos, J. L., Carbajal-Hernández, J. J., Sánchez-Fernández, L. P., Moreno-Armendáriz, M. A., Tello-Ballinas, J. A. & Hernández-Bautista, I. (2019). AnAnalytical Hierarchy Process to manage water qualityin white fish (Chirostoma estor estor) intensive culture.Computers and Electronics in Agriculture, 167, 105071.https://doi.org/10.1016/j.compag.2019.105071

  85. Vildmyren, I., Drotningsvik, A., Oterhals, Å.,Ween, O.,Halstensen, A. & Gudbrandsen, O. A. (2018). Cod residualprotein prevented blood pressure increase in Zucker fa/fa rats, possibly by Inhibiting activities of angiotensinconvertingenzyme and renin. Nutrients, 10(12), 1820.https://doi.org/10.3390/nu10121820

  86. Wang, L. K., Aulenbach, D. B. & Shammas, N. K. (2010).Treatment of Seafood Processing Wastewater. InFlotation Technology. Springer, 12, 567–592. https://doi.org/10.1007/978-1-60327-133-2_17Wattanakul, U., Wattanakul, W. & Thongprajukaew, K. (2019).Optimal Replacement of Fish Meal Protein by Stick Water inDiet of Sex-Reversed Nile Tilapia (Oreochromis niloticus).Animals, 9(8), 521. https://doi.org/10.3390/ani9080521

  87. Wattanakul, W., Wattanakul, U., Thongprajukaew, K. & Muenpo,C. (2017). Fish condensate as effective replacer of fishmeal protein in diet for striped snakehead, Channa striata(Bloch). Fish Physiology and Biochemistry, 43(1), 217–228.https://doi.org/10.1007/s10695-016-0281-8

  88. Wu, D., Zhou, L., Gao, M., Wang, M., Wang, B., He, J.,Luo, Q., Ye, Y., Cai, C., Wu, P.M Zhang, Y. & Pu, Q.(2018). Effects of stickwater hydrolysates on growthperformance for yellow catfish (Pelteobagrus fulvidraco).Aquaculture, 488, 161-173. https://doi.org/10.1016/j.aquaculture.2018.01.031

  89. Wu, T. H. & Bechtel, P. J. (2012). Screening for low molecularweight compounds in fish meal solubles by hydrophilicinteraction liquid chromatography coupled to massspectrometry. Food Chemistry, 130(3), 739–745. https://doi.org/10.1016/j.foodchem.2011.05.088

  90. Wu, T. H., Nigg, J. D., Stine, J. J. & Bechtel, P. J. (2011).Nutritional and chemical composition of by-productfractions produced from wet reduction of individual redsalmon (Oncorhynchus nerka) heads and viscera. Journalof Aquatic Food Product Technology, 20(2), 183–195.https://doi.org/10.1080/10498850.2011.557524

  91. Wu, Z., Duangmanee, P., Zhao, P., Juntawong, N. & Ma, C.(2016). The effects of light, temperature, and nutrition ongrowth and pigment accumulation of three Dunaliella salinastrains isolated from saline soil. Jundishapur Journal ofMicrobiology, 9(1), 1-9 10.5812/jjm.26732

  92. Yeong, W. T., Mohammad, A. W., Anuar, N. & Rahman, R.A. (2002). Potential use of nanofiltration membrane intreatment of wastewater from fish and surimi industries.Songklanakarin Journal Science Technology, 24, 977–987.

  93. Zamora-Sillero, J., Gharsallaoui, A. & Prentice, C. (2018).Peptides from fish by-product protein hydrolysates and itsfunctional properties: An overview. Marine Biotechnology,20(2), 118–130 https://doi.org/10.1007/s10126-018-9799-3

  94. Zhang, Y., Zhang, L., Huang, L., Dong, Z., Lu, Q.,Zou, Y. & Storebakken, T. (2022). Evaluation ofconventional or hydrolyzed stickwater from food-gradeskipjack tuna by-product in diet for hybrid grouper(Epinephelus fuscoguttatus♀× Epinephelus lanceolatus♂).Aquaculture, 548, 737714 https://doi.org/10.1016/j.aquaculture.2021.737714




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

TIP Rev Esp Cienc Quim Biol. 2022;25