medigraphic.com
SPANISH

Revista Cubana de Farmacia

ISSN 1561-2988 (Print)
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2021, Number 4

<< Back Next >>

Rev Cubana Farm 2021; 54 (4)

Effects of soy lecithin on anthropometric parameters in Wistar rats

Cala CL, Casas GSM, Rodríguez CR, Morris QHJ
Full text How to cite this article

Language: Spanish
References: 20
Page: 1-17
PDF size: 982.48 Kb.


Key words:

soy lecithin, preclinical experimentation, anthropometry.

ABSTRACT

Introduction: Soy lecithin has become a most widely used dietary supplement with supposed nutritional benefits and potential to treat obesity.
Objective: Determine the preclinical effect of soy lecithin on body weight, according to anthropometric parameters.
Methods: An experimental preclinical pharmacology study was conducted in the Laboratory of Antibodies and Experimental Biomodels (LABEX-CIM) and the Laboratory of Basic Sciences of the University of Medical Sciences of Santiago de Cuba, in 2019. Soy lecithin was administered for 30 days, at doses considered as maximum and minimum to two experimental groups of Wistar rats, to be compared with a control group that received usual feeding. Anthropometric variables were estimated at baseline and end of administration and the outcome was evaluated. Differences were established between the experimental groups by the Kruskal- Wallis Test of independent samples; the level of significance was considered less than 5 % compared to the control group and each other.
Results: In the experimental group that received the maximum dose, the weight gained decreased considerably and the higher weight gained resulted in the group with minimum dose. The weekly evolution of body weight in the experimental groups showed statistical significance in weight during the first weeks (p = 0.050), fourth (p = 0.040), and fifth (p = 0.010), with less dispersion in the distributions. There were modifications of the final abdominal and thoracic circumference with respect to the control and between the treated groups, but at maximum dose, only the final snout-anus length was significant (p = 0.017).
Conclusions: Soy lecithin, depending on the dose, modifies anthropometric parameters in Wistar rats, probably related to the modulation of physiological and biochemical functions that must be corroborated in future research, using more robust techniques.


REFERENCES

  1. Repetto G, Álvarez Herrera C, del Peso, A. Estrategias de identificación deplanteamientos alternativos a la experimentación animal. Revista deToxicología2014;31(2):108-14.

  2. Cala Calviño L, Sánchez Hechavarria ME, García Torres DS. Aspectosfarmacológicos de la lecitina de soya y sus posibles aplicaciones médicas. MEDISAN.2017 [acceso 23/05/2021]; 21(1):83-95. Disponible en:http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1029-30192017000100010&lng=es

  3. Delgado Andrade C, Olías R, Jiménez López JC, Clemente A. Aspectos de laslegumbres nutricionales y beneficiosas para la salud humana. Arbor.2016;192(779):a313. DOI: 10.3989/arbor.2016.779n3003

  4. Mamounis KJ, Yasrebi A, Roepke TA. Linoleic acid causes greater weight gain thansaturated fat without hypothalamic inflammation in the male mouse. J NutrBiochem. 2017;40:122-31. DOI: 10.1016/j.jnutbio.2016.10.016

  5. Bellido D, Carreira J, Bellido V. Evaluación del estado nutricional: antropometríay composición corporal. En: Ángel Gil. Tratado de Nutrición: Nutrición Humana en elestado de salud. Tomo V. Madrid: Panamericana; 2017. pp. 99-132.

  6. Castillo Alfonso O, González Madariaga Y, Bermúdez Muñoz G, Romero Borges R,Rojas Machado N. Acciones capacitadoras para la competencia de profesionales ytécnicos en experimentación con animales de laboratorio. EDUMECENTRO. 2020[acceso 23/05/2021]; 12(2):161-76. Disponible en:http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2077-28742020000200161&lng=es.Epub 08-Abr-2020

  7. Chito Trujillo DM, Ortega Bonilla RA, Ahumada Mamián AF, Rosero López B.Quinoa (ChenopodiumquinoaWilld.) versus soja (Glycinemax [L.] Merr.) en lanutrición humana: revisión sobre las características agroecológicas, de composicióny tecnológicas. Rev Esp Nutr Hum Diet. 2017;21(2):184-98. DOI:10.14306/renhyd.21.2.256

  8. Pele GI, Ogunsua AO, Adepeju AB, Esan YO, Oladiti EO. Effects of ProcessingMethods on the Nutritional and Anti-Nutritional Properties of Soybeans (Glycinemax). Afr. J. FoodSci. Technol. 2016;7(1):009-012. DOI: 10.14303/ajfst.2016.010

  9. Aoyama T, Kohno M, Saito T, Fukui K, Takamatsu K, Yamamoto T. Reduction byphytate-reduced soybean beta-conglycinin of plasma triglyceride level of young andadult rats. BiosciBiotechnolBiochem. 2001;65:1071-5. DOI: 10.1271/bbb.65.1071

  10. Leiva R, Olguin M, Labourdette V, Revelant G, Gayol M, Posadas M. Salvado desoja: efectos sobre el crecimiento en ratas. Resúmenes de las comunicaciones libresaprobadas. Asociación Bioquímica Argentina. Redalyc. Bioquímica y PatologíaClínica. 2007 [acceso 23/05/2021]; 71(3):59-70. Disponible en:https://www.redalyc.org/pdf/651/65112133012.pdf

  11. Kumari S, Krishnan V, Jolly M, Sachdev A. Reduction in phytate levels and HClextractabilityof divalent cations in soybean (Glycine max L.) during soaking andgermination. Ind J Plant Physiol. 2015;20(1):44-9. DOI: 10.1007/s40502-014-0132-5

  12. Wang M, Fu Y, Liu H. Nutritional quality and ions uptake to PTNDS in soybeans.Food Chem. 2016;192:750-9. DOI: 10.1016/j.foodchem.2015.07.002

  13. Yasothai R. Antinutritional factors in soybean meal and its deactivation.International Journal of Science, Environment and Technology. 2016;5(6):3793-97.DOI: https://www.ijset.net/journal/1377.pdf

  14. Perris PD, Silva C, Fernández I, Mambrin MC, Slobodianik NH, Feliu MS. Dietascon diferentes fuentes lipídicas: su efecto en el perfil de ácidos grasos séricos de larata. Rev. chil. mutar.2014Sep;41(3):292-96. DOI: 10.4067/S0717-75182014000300010

  15. Li D, Ikaga R, Yamazaki T. Soya protein β-conglycinin ameliorates fatty liver andobesity in diet-induced obese mice through the down-regulation of PPARγ. BritishJournal of Nutrition. 2018;119(11):1220-32. DOI: 10.1017/S0007114518000739

  16. Kim M, Im S, Cho Yk, Choi C, Son Y, Kwon D, et al. Anti-Obesity Effects ofSoybean Embryo Extract and Enzymatically-Modified Isoquercitrin. Biomolecules2020;10(10):1394. DOI: 10.3390/biom10101394

  17. Attia Y El-Wahab, El-Hamid A, El-Syed A, de Oliveira MC, Nagadi Sameer A,Kamel I, et al. Physiological parameters and productive performance of rabbit doesand their off springs with dietary supplementation of soy lecithin. Pesq AgropecBras. 2018;53(9):1078-85. DOI: 10.1590/s0100-204x2018000900012

  18. Ibrahim KS, El-Sayed EM. Dietary conjugated linoleic acid and medium-chaintriglycerides for obesity management. J Biosci.2021 [acceso 23/05/2021];46:12.Disponible en: https://www.ias.ac.in/article/fulltext/jbsc/046/0012

  19. Acosta Hurtado A, Quiñones Ramos D, Reyes Avalos W. Efecto de dietas conlecitina de soya en el crecimiento, muda y supervivencia de machos del camarón derío Cryphiopscaementarius (Crustacea: Palaemonidae). Scientia Agropecuaria.2018;9(1):143-51. DOI: 10.17268/sci.agropecu.2018.01.15

  20. Pagheh E, Agh N, MarammaziJasem G, Nouri F, Sepahdari A, Gisbert E, et al.Dietary soybean lecithin affects growth performance, fillet biochemical compositionand digestive enzyme activity in Sparidentex hasta juvenile. Journal of AppliedAnimal Research. 2019;47(1):24-33. DOI: 10.1080/09712119.2018.1557663




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Cubana Farm. 2021;54