medigraphic.com
SPANISH

Revista Cubana de Oftalmología

ISSN 1561-3070 (Electronic)
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2022, Number 4

<< Back Next >>

Rev Cub Oftal 2022; 35 (4)

Rho kinase inhibitors and their role in corneal endothelial dysfunction

Jareño OM, Plasencia SR, Hernández FY, Benítez MMC, López HS
Full text How to cite this article

Language: Spanish
References: 33
Page: 1-14
PDF size: 326.67 Kb.


Key words:

corneal endothelium, Rho kinase inhibitor, Fuchs' dystrophy.

ABSTRACT

The corneal endothelium is its innermost layer and, despite being a monolayer of cells, is able to preserve tissue transparency with two fundamental functions: barrier and endothelial sodium-potassium (Na-K) pump. Endothelial cells have very little regenerative capacity, so any endothelial injury is compensated by the expansion and migration of adjacent residual cells. Corneal endothelial dysfunction is characterized by corneal edema that can lead to corneal tissue transplantation. New pharmacologic therapies with Rho kinase inhibitors and tissue engineering-based therapies have recently been proposed. An automated search on the main advances in these therapies was performed using the Infomed platform, specifically the Virtual Health Library. The information was summarized in the final report. We conclude that there is significant progress in the understanding of pathogenesis, and in the development of new treatments.


REFERENCES

  1. Van den Bogerd B, Ni´ Dhubhghaill S, Koppen C, Tassignon MJ, Zakaria N. A review of the evidence for in vivo corneal endothelial regeneration. Survey of ophthalmology. 2018;6(3):149-65. DOI: http://dx.doi.org/10.1016/j.survophthal.2017.07.0041.

  2. Chan W, Akhbanbetova A, Quantock AJ, Heard CM. Topical delivery of a Rho-kinase inhibitor to the cornea via mucoadhesive film. European Journal of Pharmaceutical Sciences. 2016;91:256-64. DOI: http://dx.doi.org/10.1016/j.ejps.2016.05.0162.

  3. Zoega GM, Fujisawa A, Sasaki H, Kubota A, Sasaki K, Kitagawa K, Jonasson F. Prevalence and risk factors for cornea guttata in the Reykjavik Eye Study. Ophthalmology. 2006;113(4):565-9. DOI: http://dx.doi.org/10.1016/j.ophtha.2005.12.0143.

  4. Okumura N, Kinoshita S, Koizumi N. Application of Rho Kinase Inhibitors for the Treatment of Corneal Endothelial Diseases. Journal of Ophthalmology. 2017(6):1-8. DOI: http://dx.doi.org/10.1155/2017/26469044.

  5. Okumura N, Inoue R, Okazaki Y, Nakano S, Nakagawa H, Kinoshita S, Koizumi N. Effect of the Rho Kinase Inhibitor Y-27632 on Corneal Endothelial Wound Healing. Invest Ophthalmol Vis Sci. 2015;56(10):6067-74. DOI: http://dx.doi.org/10.1167/iovs.15-175955.

  6. Arnold JJ, Hansen MS, Gorman GS, Inoue T, Rao V, Spellen S, Hunsinger RN, Chapleau CA, Pozzo-Miller L, Stamer WD, Challa P. The effect of Rho associated kinase inhibition on the ocular penetration of timolol maleate. Invest Ophthalmol Vis Sci. 2013;54(2):1118-26. DOI: http://dx.doi.org/10.1167/iovs.12-105836.

  7. Nakagawa H, Koizumi N, Okumura N, Suganami H, Kinoshita S. Morphological Changes of Human Corneal Endothelial Cells after Rho-Associated Kinase Inhibitor Eye Drop (Ripasudil) Administration: A Prospective Open-Label Clinical Study. PLoS One. 2015;10(9):e0136802. DOI: http://dx.doi.org/10.1371/journal.pone.01368027.

  8. Chan KY, Cho P, Boost M. Corneal epithelial cell viability of an ex vivo porcine eye model. Clin Exp Optom. 2014;97(4):337-40. DOI: http://dx.doi.org/10.1111/cxo.121288.

  9. Okumura N, Sakamoto Y, Fujii K. Rho kinase inhibitor enables cell-based therapy for corneal endothelial dysfunction. Sci Rep. 2016;6(1):26113. DOI: http://dx.doi.org/10.1038/srep261139.

  10. Joyce NC. Proliferative capacity of the corneal endothelium. Progress in Retinal and Eye Research. 2003;22(3):359-89. DOI: http://dx.doi.org/10.1016/s1350-9462(02)00065-410.

  11. Joyce N. Cell cycle status in human corneal endothelium. Experimental Eye Research. 2005;81(6):629-38. DOI: http://dx.doi.org/10.1016/j.exer.2005.06.01211.

  12. Joyce NC, Harris DL, Mello DM. Mechanisms of Mitotic Inhibition in Corneal Endothelium: Contact Inhibition and TGF-ß2. Investigative Ophthalmology & Visual Science. 2002[acceso 24/02/2022];43(7):2152-9. Disponible en: https://pubmed.ncbi.nlm.nih.gov/12091410/12.

  13. Moshirdar M. Use of Rho kinase Inhibitors in Ophthalmology: A Review of the Literature. Med Hypothesis Discov Innov Ophthalmol. 2018[acceso: 24/02/2022];7(3):101-111. Disponible en: https://pubmed.ncbi.nlm.nih.gov/30386798/13.

  14. Okumura N. The New Therapeutic Concept of Using a Rho Kinase Inhibitor for the Treatment of Corneal Endothelial Dysfunction. Cornea. 2011;30(1):S54-S59. DOI: http://dx.doi.org/10.1097/ICO.0b013e3182281ee114.

  15. Okumura N. "Enhancement on primate corneal endothelial cell survival in vitro by a ROCK inhibitor," Investigative Ophthalmology & Visual Science. 2009;50(8):3680-368. DOI: http://dx.doi.org/10.1167/iovs.08-263415.

  16. Peh GS. The effects of Rho-associated kinase inhibitor Y-27632 on primary human corneal endothelial cells propagated using a dual media approach. Sci Rep. 2015;5:9167. DOI: http://dx.doi.org/10.1038/srep0916716.

  17. Okumura Y, Okazaki R. Effect of the Rho- associated kinase inhibitor eye drop (ripasudil) on corneal endothelial wound healing. Investigative Ophthalmology & Visual Science. 2016;57(3):1284-92. DOI: http://dx.doi.org/10.1167/iovs.15-1858617.

  18. Garnock-Jones KP. Ripasudil: First Global Approval. Drugs. 2014;74(18):2211-5. DOI: http://dx.doi.org/10.1007/s40265-014-0333-218.

  19. Koizumi N, Okumura N, Ueno M. Rho-associated kinase inhibitor eye drop treatment as a possible medical treatment for Fuchs corneal dystrophy. Cornea. 2013;32(8):1167-70. DOI: http://dx.doi.org/10.1097/ICO.0b013e318285475d19.

  20. Camacho EO, Gómez QA. Distrofia de Fuchs. Rev Med Cos Cen. 2015[acceso 24/02/2022];72(614):195-200. Disponible en: https://www.medigraphic.com/cgi-bin/new/resumen.cgi?IDARTICULO=5861420.

  21. López González M, Rodríguez de la Paz U, López Hernández SM, Lapido Polanco S, Baldoquin Rodríguez W. Características clínicas de la distrofia corneal endotelial de Fuchs. Revista Cubana de Oftalmología 2014[acceso 24/02/2022];27(4):1561-3070. Disponible en: http://www.revoftalmologia.sld.cu/index.php/oftalmologia/article/view/33821.

  22. Macsai M, Shiloach M. Use of Topical Rho Kinase Inhibitors in the Treatment of Fuchs Dystrophy After Descemet Stripping Only. Cornea. 2019;38(5):529-34. DOI: http://dx.doi.org/10.1097/ICO.000000000000188322.

  23. Okumura N, Koizumi N, Kay EP, Ueno M, Sakamoto Y, Nakamura S, et al. "The ROCK inhibitor eye drop accelerates corneal endothelium wound healing," Investigative Ophthalmology & Visual Science. 2013;54(4):2493-502. DOI: http://dx.doi.org/10.1167/iovs.12-1132023.

  24. Sharma N. Corneal edema after phacoemulsification. Indian J Ophthalmol. 2017 Dec;65(12):1381-9. DOI: http://dx.doi.org/10.4103/ijo.IJO_871_1724.

  25. Feizi S. Corneal endothelial cell dysfunction: etiologies and management. Ther Adv Ophthalmol. 2018;10:2515841418815802. DOI: http://dx.doi.org/10.1177/251584141881580225.

  26. Sharma N, Singhal D, Nair SP, Sahay P, Sreeshankar SS, Maharana PK. Corneal edema after phacoemulsification. Indian J Ophthalmol. 2017;65(12):1381-9. DOI: http://dx.doi.org/10.4103/ijo.IJO_871_1726.

  27. De Acha Torrez Rafael, Dolz Tejerina Helmut, Dolz Tejerina Vladimir. Acuaporinas, implicaciones en modelos patológicos, de tratamiento y rol clínico. Rev Cient Cienc Méd. 2015[acceso 24/02/2022];18(2):38-42. Disponible en: http://www.scielo.org.bo/scielo.php?script=sci_arttext&pid=S1817-74332015000200009&lng=e27.

  28. Nakagawa H, Koizumi N, Okomura N, Suganami H, Kinoshita S. Morphological Changes of Human Corneal Endothelial Cells after Rho-Associated Kinase Inhibitor Eye Drop (Ripasudil) Administration: A Prospective Open-Label Clinical Study. PLoS ONE. 2015;10(9):e0136802. DOI: http://dx.doi.org/10.1371/journal.pone.013680228.

  29. Alkharashi M, AlAbbasi O, Magliyah M. Perioperative Use of Rho-Kinase Inhibitors has Beneficial Effect on Corneal Endothelium after Phacoemulsification. Middle East African Journal of Ophthalmology. 2019;26(4):246-9. DOI: http://dx.doi.org/10.4103/meajo.MEAJO_27_1929.

  30. Okumura N, Koizumi N. Regeneration of the corneal endothelium. Current Eye Research 2019;45(3):303-312. DOI: http://dx.doi.org/10.1080/02713683.2019.170052930.

  31. Okumura N, Kagami T, Watanabe K, Kadoya S, Sato M, Koizumi N. Feasibility of a cryopreservation of cultured human corneal endothelial cells. PLoS One. 2019;14(6):e0218431. DOI: http://dx.doi.org/10.1371/journal.pone.021843131.

  32. Okumura S, Kinoshita S, Koizumi N. Cell-based approach for treatment of corneal endothelial dysfunction. Cornea. 2014;33(11):S37-S41. DOI: http://dx.doi.org/10.1097/ICO.000000000000022932.

  33. Kinoshita S, Koizumi N, Ueno M, Okumura N, Imai K, Tanaka H, et al. Injection of Cultured Cells with a ROCK Inhibitor for Bullous Keratopathy. N Engl J Med. 2018;378(11):995-1003. DOI: http://dx.doi.org/10.1056/NEJMoa171277033.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Cub Oftal. 2022;35