medigraphic.com
SPANISH

Medicina Interna de México

Colegio de Medicina Interna de México.
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2025, Number 07

<< Back Next >>

Med Int Mex 2025; 41 (07)

Validation of a regression equation to estimate body weight in the Peruvian population from ENDES 2022 and ENDES 2023

Guevara TA
Full text How to cite this article

Language: Spanish
References: 19
Page: 378-385
PDF size: 408.44 Kb.


Key words:

Body weight, Waist circumference, Body height, Anthropometry, Linear models.

ABSTRACT

Objective: To develop an equation to estimate body weight using abdominal circumference, height, and age in Peruvian adults.
Materials and Methods: Analytical study based on data from the Encuesta Demográfica y de Salud Familiar (ENDES 2022). In the population ENDES 2023 external validation was carried out. The variables were: body weight, age, height and abdominal circumference. Multiple linear regression was applied. The coefficient of determination (R²) and error metrics were determined: mean absolute error, root mean square error, and mean relative error.
Results: The ENDES 2022 sample was of 30,071 persons and the ENDES 2023 sample was of 31,247.The multiple linear regression model in ENDES 2022 had a coefficient of determination R² of 0.895, explaining 90% of the variability in body weight. The regression equation had a mean absolute error of 3.50 kg, root mean square error of 4.58 kg and mean relative error of 0.05, indicating high precision. The Spearman cor- relation was 0.943. When applying the model in ENDES 2023, the R² coefficient was 0.876, confirming its predictive capacity in an independent sample.
Conclusions: The regression equation based on abdominal perimeter, height and age is a reliable method to estimate body weight in Peruvian adults.


REFERENCES

  1. Zierle-Ghosh A, Jan A. Physiology, body mass index. 2024.

  2. Human Body Part Weights [Internet]. Robslink.com.

  3. Piaggi P. Metabolic determinants of weight gain in humans.Obesity (Silver Spring). 2019; 27 (5): 691-9. http://dx.doi.org/10.1002/oby.22456

  4. Khanna D, Peltzer C, Kahar P, Parmar MS. Body mass index(BMI): A screening tool analysis. Cureus 2022. http://dx.doi.org/10.7759/cureus.22119

  5. Sørensen TIA, Martinez AR, Jørgensen TSH. Epidemiologyof obesity. En: From Obesity to Diabetes. Cham:Springer International Publishing; 2022: 3-27. http://dx.doi.org/10.1007/164_2022_581

  6. Ríos-Reyna C, Díaz-Ramírez G, Castillo-Ruíz O, Pardo-Buitimea NY, Alemán-Castillo SE. Políticas y estrategias paracombatir la obesidad en Latinoamérica. Rev Méd Inst MexSeguro Soc 2022; 60 (6): 666.

  7. Chávez V, Jaime E. Prevalencia de sobrepeso y obesidaden el Perú. Rev Peru Ginecol Obstet 2024; 63 (4): 593-8.

  8. Samerchua A, Suraseranivongse S, Komoltri C. A comparisonof pediatric weight estimation methods for emergencyresuscitation. Pediatr Emerg Care 2019; 35 (10): 705-11.http://dx.doi.org/10.1097/pec.0000000000001137

  9. Aragón-Joya YA. Fórmulas para la estimación rápida del pesoa partir de la edad y su correlación con el peso medido enuna población pediátrica de Colombia entre los 2 y 15 años.2017. http://dx.doi.org/10.13140/RG.2.2.15554.38087

  10. Kang K, Absher R, Farrington E, Ackley R, So T-Y. Evaluationof different methods used to calculate ideal body weightin the pediatric population. J Pediatr Pharmacol Ther2019; 24 (5): 421-30. http://dx.doi.org/10.5863/1551-6776-24.5.421

  11. Peterson CM, Thomas DM, Blackburn GL, Heymsfield SB.Universal equation for estimating ideal body weight andbody weight at any BMI. Am J Clin Nutr 2016; 103 (5):1197-203. http://dx.doi.org/10.3945/ajcn.115.121178

  12. Martina Chávez M, Amemiya Hoshi I, Suguimoto WatanabeSP, Arroyo Aguilar RS, et al. Depresión en adultos mayoresen el Perú: distribución geoespacial y factores asociadossegún ENDES 2018-2020. An Fac Med (Lima Peru: 1990).2022; 83 (3): 180-7. http://dx.doi.org/10.15381/anales.v83i3.23375

  13. Rabito EI, Vannucchi GB, Suen VMM, et al. Weight andheight prediction of immobilized patients. Rev Nutr2006; 19 (6): 655-61. http://dx.doi.org/10.1590/s1415-52732006000600002

  14. Vega Abascal JB, Leyva Sicilia Y, Teruel Ginés R. La circunferenciaabdominal. Su inestimable valor en la AtenciónPrimaria de Salud. CCH Correo cient Holguín 2019; 23 (1):270-4. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1560-43812019000100270

  15. Miyatake N, Matsumoto S, Miyachi M, et al. Relationshipbetween changes in body weight and waist circumferencein Japanese. Environ Health Prev Med 2007; 12 (5): 220-3.http://dx.doi.org/10.1265/ehpm.12.220

  16. National Academies of Sciences, Engineering, and Medicine,Health and Medicine Division, Food and NutritionBoard, Roundtable on Obesity Solutions, Callahan EA. Thescience, strengths, and limitations of body mass index.Washington DC: National Academies Press; 2023.

  17. Boutari C, Mantzoros CS. Decreasing lean body mass withage: Challenges and opportunities for novel therapies.Endocrinol Metab (Seoul) 2017; 32 (4): 422. http://dx.doi.org/10.3803/enm.2017.32.4.422

  18. Buckley RG, Stehman CR, Dos Santos FL, et al. Bedsidemethod to estimate actual body weight in the EmergencyDepartment. J Emerg Med 2012; 42 (1): 100-104. https://doi.org.10.1016/j.jemermed.2010.10.022

  19. Peng CJ, Chang CM, Yang KS. Using simple anthropometricparameters to develop formulas for estimating weightand height in Chinese adults. Ann N Y Acad Sci 2000;904: 327-332. https://doi.org.10.1111/j.1749-6632.2000.tb06475.x




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Med Int Mex. 2025;41