medigraphic.com
SPANISH

Acta Médica Grupo Angeles

Órgano Oficial del Hospital Angeles Health System
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
    • Send manuscript
    • Names and affiliations of the Editorial Board
  • Policies
  • About us
    • Data sharing policy
    • Stated aims and scope
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2025, Number 6

<< Back Next >>

Acta Med 2025; 23 (6)

Artificial intelligence and its use in neurology: an updated review

Hernández ZA
Full text How to cite this article 10.35366/121694

DOI

DOI: 10.35366/121694
URL: https://dx.doi.org/10.35366/121694

Language: Spanish
References: 33
Page: 534-537
PDF size: 195.59 Kb.


Key words:

artificial intelligence, neurology, machine learning, neuroimaging, neurodegenerative diseases.

ABSTRACT

Artificial intelligence (AI) has rapidly become a transformative tool in neurology, enhancing diagnosis, treatment, and patient outcomes. This review explores current applications of AI in neurology, including machine learning algorithms for early detection of neurodegenerative diseases, advanced neuroimaging analysis, and personalized treatment strategies. Ethical considerations, challenges, and future directions are also discussed. Effective integration of AI promises significant improvements in patient care, although ongoing evaluation is necessary to address current limitations.


REFERENCES

  1. Jiang F, Jiang Y, Zhi H, Dong Y, Li H, Ma S et al. Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol. 2017; 2 (4): 230-243.

  2. Esteva A, Robicquet A, Ramsundar B, Kuleshov V, DePristo M, Chou K et al. A guide to deep learning in healthcare. Nat Med. 2019; 25 (1): 24-29.

  3. Battineni G, Chintalapudi N, Amenta F. Machine learning driven by magnetic resonance imaging for the classification of Alzheimer disease progression: systematic review and meta-analysis. JMIR Aging. 2024; 7: e59370. doi: 10.2196/59370.

  4. Li R, Zhang W, Suk HI, Wang L, Li J, Shen D, et al. Deep learning based imaging data completion for improved brain disease diagnosis. Med Image Comput Comput Assist Interv. 2014; 17 (Pt 3): 305-312.

  5. Bot BM, Suver C, Neto EC, Kellen M, Klein A, Bare C et al. The mPower study, Parkinson disease mobile data collected using ResearchKit. Sci Data. 2016; 3: 160011.

  6. Zhang Z, Yang J, Li H, Wu Q, Zheng J. Deep learning on MRI for Alzheimer's disease: methods and applications. A systematic review. Eur J Radiol. 2022; 141: 109810.

  7. Voigtlaender S, Pawelczyk J, Geiger M, Vaios EJ, Karschnia P, Cudkowicz M et al. Artificial intelligence in neurology: opportunities, challenges, and policy implications. J Neurol. 2024; 271 (5): 2258-2273.

  8. Surianarayanan C, Lawrence JJ, Chelliah PR, Prakash E, Hewage C. Convergence of artificial intelligence and neuroscience towards the diagnosis of neurological disorders—A scoping review. Sensors (Basel). 2023; 23 (6): 3062.

  9. Kumar M, Anderson MJ, Antony JW, Baldassano C, Brooks PP, Cai MB et al. BrainIAK: The brain imaging analysis kit. Aperture Neuro. 2021; 1: 1-19.

  10. Angelucci F, Ai AR, Piendel L, Cerman J, Hort J. Integrating AI in fighting advancing Alzheimer: diagnosis, prevention, treatment, monitoring, mechanisms, and clinical trials. Curr Opin Struct Biol. 2024; 87: 102857.

  11. Du Y, Fryer SL, Lin D, Sui J, Yu Q, Chen J et al. Identifying functional network changing patterns in individuals at clinical high-risk for psychosis and patients with early illness schizophrenia: a group ICA study. Neuroimage Clin. 2017; 17: 335-346.

  12. Williams KS. Evaluations of artificial intelligence and machine learning algorithms in neurodiagnostics. J Neurophysiol. 2024; 131 (5): 825-831.

  13. Senders JT, Staples PC, Karhade AV, Zaki MM, Gormley WB, Broekman MLD et al. Machine learning and neurosurgical outcome prediction: a systematic review. World Neurosurg. 2018; 109: 476-486.e1.

  14. An S, Malhotra K, Dilley C, Han-Burgess E, Valdez JN, Robertson J et al. Predicting drug-resistant epilepsy - A machine learning approach based on administrative claims data. Epilepsy Behav. 2018; 89: 118-125. doi: 10.1016/j.yebeh.2018.10.013.

  15. Li X, Zhou Y, Dvornek NC, Zhang M, Gao S, Zhuang J et al. Deep learning for EEG data analytics: a survey. Concurr Comput Pract Exp. 2020; 32 (18): e5580.

  16. Hopfengartner R, Kasper BS, Graf W, Gollwitzer S, Kreiselmeyer G, Stefan H et al. Automatic seizure detection in long-term scalp EEG using an adaptive thresholding technique: a validation study for clinical routine. Clin Neurophysiol. 2014; 125 (7): 1346-1352.

  17. Griffiths RI, Kotschet K, Arfon S, Xu ZM, Johnson W, Drago J et al. Automated assessment of bradykinesia and dyskinesia in Parkinson's disease. J Parkinsons Dis. 2012; 2 (1): 47-55.

  18. Obermeyer Z, Powers B, Vogeli C, Mullainathan S. Dissecting racial bias in an algorithm used to manage the health of populations. Science. 2019; 366 (6464): 447-453.

  19. Chen IY, Pierson E, Rose S, Joshi S, Ferryman K, Ghassemi M. Ethical machine learning in healthcare. Annu Rev Biomed Data Sci. 2021; 4: 123-144.

  20. Hardt M, Price E, Srebro N. Equality of opportunity in supervised learning. In: Advances in Neural Information Processing Systems (NeurIPS). Barcelona, Spain: 2016; 29.

  21. Price WN 2nd, Cohen IG. Privacy in the age of medical big data. Nat Med. 2019; 25 (1): 37-43.

  22. Voigt P, von dem Bussche A. The EU General Data Protection Regulation (GDPR): a practical guide. Cham: Springer International Publishing; 2017.

  23. Rieke N, Hancox J, Li W, Milletari F, Roth HR, Albarqouni S et al. The future of digital health with federated learning. NPJ Digit Med. 2020; 3: 119.

  24. Holzinger A, Biemann C, Pattichis CS, Kell DB. What do we need to build explainable AI systems for the medical domain? arXiv. 2017; arXiv:1712.09923.

  25. Samek W, Montavon G, Vedaldi A, Hansen LK, Müller KR. Explainable AI: interpreting, explaining and visualizing deep learning. Cham: Springer; 2019.

  26. Gerke S, Minssen T, Cohen IG. Ethical and legal challenges of artificial intelligence-driven healthcare. In: Bohr A, Memarzadeh K, editors. Artificial intelligence in healthcare. Amsterdam: Elsevier; 2020. pp. 295-336.

  27. U.S. Food and Drug Administration. Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD) Action Plan. Silver Spring (MD): FDA; 2021.

  28. Kelly CJ, Karthikesalingam A, Suleyman M, Corrado G, King D. Key challenges for delivering clinical impact with artificial intelligence. BMC Med. 2019; 17 (1): 195.

  29. Amunts K, Knoll AC, Lippert T, Pennartz CMA, Ryvlin P et al. The Human Brain Project-Synergy between neuroscience, computing, informatics, and brain-inspired technologies. PLoS Biol. 2019; 17 (7): e3000344.

  30. Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019; 25 (1): 44-56.

  31. Bohr A, Memarzadeh K. The rise of artificial intelligence in healthcare applications. In: Bohr A, Memarzadeh K, editors. Artificial intelligence in healthcare. Amsterdam: Elsevier; 2020. pp. 25-60.

  32. Masters K. Artificial intelligence in medical education. Med Teach. 2019; 41 (9): 976-980.

  33. Kaissis GA, Makowski MR, Rückert D, Braren RF. Secure, privacy-preserving and federated machine learning in medical imaging. Nat Mach Intell. 2020; 2 (6): 305-311.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Acta Med. 2025;23