medigraphic.com
SPANISH

Revista de Investigación Clínica

Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2014, Number 5

<< Back Next >>

Rev Invest Clin 2014; 66 (5)

Audiometric evaluation short and medium term in cochlear implants

Alonso-Luján LR, Gutiérrez-Farfán I, Luna-Reyes FA, Chamlati-Aguirre LE, Durand RA
Full text How to cite this article

Language: English
References: 14
Page: 415-421
PDF size: 157.68 Kb.


Key words:

Hearing loss, Deafness, Cochlear implant, Auditive gain, Audiology.

ABSTRACT

Objective. Our purpose is report the results of cochlear implant program in this Institute, since our first surgery from November 2007, until December 2012. Material and methods. A cross-sectional study, observational, descriptive, analyzing the information about thresholds before and after implantation, using patients files (diagnosis, onset of hearing loss, brainstem auditory evoked potential (BAEP), computed tomography (CT), magnetic resonance imaging (MRI), implanted ear, brand and model of cochlear implants (CI) and audiometric studies before and after the CI. Results. We report the evolution of 68 patients, age ranged 1 year 8 months to 39 years 3 months old. 94% patients (n = 64) had pre-lingual hearing loss being hereditary non-syndromic hearing loss the most common etiology (29.4%). 100% patients had auditory brainstem responses showing bilateral profound hearing loss, in the 77.9% type A tympanograms were obtained (Jerger’s classification), and 100% had absence of stapedial reflexes and otoacoustic emissions with low reproducibility. CT reported as normal in 85.2% of patients, the findings: 5.8% had chronic mastoiditis changes, other findings reported in 1.4% of patients were: digastric right facial nerve, facial nerve canal dehiscence, enlarged vestibular aqueduct, occupation and poor pneumatization of mastoid air cells, lateral semicircular canals agenesis, incomplete partition of the cochlea with wide vestibular and vestibular aqueduct dilatation. Most frequent MR findings of skull with cerebellopontine angle approach were vascular loops of internal auditory canals unilaterally. In 10.2%, 55.8% of patients (n = 38) were implanted in the right ear, 56 (82.3%) with a CI from Advanced Bionics, HiRes 90K model, the remaining with Cochlear, Freedom and Nucleus 5 models. Developments in CI results by audiometric tests: prior to placement was 106.2 dB averages at frequencies assessed, one month later 62.4 dB, at 6 months 44 dB, and with satisfactory threshold 32.9 dB. 55.8% of patients (n = 38) with P + HiRes Fidelity 120 strategy, the remaining with Hires S + Fidelity 120, Hires S and ACE RE. Discussion. Audiology service proposed to place the CI in the worst ear by threshold in audiometric tests, the oto laryngology service proposed the best ear from anatomical point view. Implanted in the INR more Advanced Bionics CI faq frequently due to the donation by the insurance for a new generation. Hearing thresholds using CI have improved since activation.


REFERENCES

  1. Secretaría de salud. Programa de acción específico 2007-2012. Tamiz auditivo neonatal e intervención temprana. 2009.

  2. Olusanya BO, Somefun AO, Swanepoel De W. The need for standarization of methods for worldwide infant hearing screening: a systematic review. Laryngoscope 2008; 118(10): 1830-6.

  3. Monsalve A, Núñez F. La importancia del diagnóstico e intervención temprana para el desarrollo de los niños sordos. Los programas de detección precoz de la hipoacusia. Intervención psicosocial 2006; 15(1): 7-28.

  4. Koch DB, Staller S, Jaax K, Martin E. Bioengineering Solutions for Hearing Loss and Related Disorders. Otolaryngol Clin N Am 2005; 38(2): 255-72.

  5. Conell S, Balkany J. Cochlear implants. Clin Geriatr 2006; 22(3): 677-86.

  6. Blamey P. Sound processing in hearing aids and Cochlear implants is gradually converging. Hear J 2005; 58(11): 44-52.

  7. Luntz M, Shpak T, Weiss H. Binaural-bimodal hearing: Concomitant use of a unilateral cochlear implant and a contralateral hearing aid. Acta Oto-Laryngol 2005; 125(8): 863-9.

  8. Clarós P, Pujol M, Clarós A, Clarós A Jr, Clarós A. Consideraciones sobre el Implante Coclear basadas en una experiencia de 200 casos. ORL-DIPS 2001; 28(4): 175-88.

  9. David E, Ostroff J, Shipp D, Nedzelski J, Chen J, Parnes L, Zimmerman K, et al. Speech coding Strategies and Revised Cochlear Implant Candidacy: An Analysis of Post-Implant Performance. Otol Neurotol 2003; 24(2): 228-33.

  10. Singh S, Kong Y, Zeng F. Cochlear implant melody recognition as a function of melody frequency range, harmonicity, and number of electrodes. Ear Hear 2009; 30(2): 160-8.

  11. Gfeller K, Turner C, Oleson J, Zhang X, Gantz B, Froman R, Olszewsky C. Accuracy of cochlear implant recipients on pitch perception, melody recognition, and speech reception in noise. Ear Hear 2007; (28): 413-23.

  12. Dasika V, Werner L, Norton S, Nie K, Rubinstein J. Measuring sound detection and reaction time in infant and toddler cochlear implant recipients using an observer-based procedure: a first response. Ear & hear 2009(30): 250-61.

  13. Castillo-Castillo S, Roque-Lee G, Carranco-Hernández L, Martínez M. Criterios audiológicos para la selección de candidatos a implantación coclear en el paciente pediátrico. Rev Mex AMCAOF 2012; 1(3): 170-80.

  14. Escamilla R, Durand J. Bases técnicas y fisiológicas de las emisiones otoacústicas transitorias. An Orl Mex 2005; (4): 103-11.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Invest Clin. 2014;66