medigraphic.com
SPANISH

Revista de Investigación Clínica

Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2014, Number 5

<< Back Next >>

Rev Invest Clin 2014; 66 (5)

Desynchronization/synchronization of parasagittal EEG rhythms during habituation to photostimulation in adults

Brust-Carmona H, Valadez G, Galicia M, Flores-Ávalos B, Sánchez A, Espinosa R, Yáńez Ó
Full text How to cite this article

Language: English
References: 39
Page: 422-430
PDF size: 293.98 Kb.


Key words:

qEEG habituation, Alpha desynchronization/ synchronization, Delta, theta, beta synchronization, Linear regression, Habituation.

ABSTRACT

Introduction. Learning by habituation implies a gradual diminution of the organism’s responses to non-relevant stimuli. These responses, resulting from electrical oscillations of the brain, can be analyzed through quantitative electroencephalography (qEEG). Objective. To characterize the absolute power (AP) in the range of delta (δ), theta (θ), alpha (α), beta (β) in cortical parasagittal regions during habituation to photostimulation (RPh). Material and methods. We studied 81 undergraduate students. The EEG was recorded in a Nicolet; awake subjects with closed eyes were photostimulated (5 Hz for 2 s, 20 times, RPh). The UAMI/Yáńez program identifies the RPh signal, chooses and collects 2-sec samples before (Pre) and during RPh, and instruments the Welch periodogram, which integrates the absolute power (AP) of δ, θ, α, and β. We calculated the average AP (AAP) in Pre and RPh per frequency and lead. AAP differences were assessed with non-parametric tests. Linear regression was used to plot the AAPs of each Pre and each RPh sample, representing the resulting slope with its statistical significance. Results. RPh increased the AAP of δ in frontal and frontocentral leads of both hemispheres, and its slopes were ascendant. AAP of θ increased in fronto-frontal and diminished in the other three leads, its slopes were ascendant in right central parietal and parieto-occipital leads. AAP of α increased in fronto-frontal leads, did not change in fronto-central, and diminished in the other leads; its slopes were descendent in Pre and ascendant in RPh in both hemispheres. AAP of β increased in the four leads; in Pre, β slopes were descendent in parieto-occipital leads of both hemispheres. During RPh, δ slopes were ascendant in right parieto-central and in both parieto-occipital leads. Conclusion. The progressive diminution of alpha’s desynchronization, which ends in synchronization, is probably due to topohyperpolarization of neuronal membranes and represents habituation. This is complemented with synchronization of the delta rhythm in anterior cortical areas and of theta and beta in areas of the right hemisphere.


REFERENCES

  1. Ricardo-Garcell J. Aportes del electroencefalograma convencional y el análisis de frecuencias para el estudio de trastornos por déficit de atención. Primera parte. Salud Mental 2004; 27: 22-7.

  2. Roy J, Prichep L, Easton P. Normative data banks and neurometrics: basic concepts, methods and results of norms constructions. En: Remond A (ed.). Handbook of electroencephalography and clinical neurophysiology. Vol. III. Computer Analysis of the EEG and other neurophysiological signals. Elsevier 1987, p. 449-95.

  3. Thatcher RW, Lubar JF. History of the scientific standards of qEEG normative databases. En: BudzinskyT, Budzinski H, Evans J, Abarbanel A (eds.). Introduction to QEEG and neurofeedback: Advanced theory and applications. Academic Press 2008; p. 28-62.

  4. Buzsáki G, Draguhn A. Neuronal oscillations in cortical networks. Science 2004; 30: 1926-29.

  5. Sauseng P, Klimesch W. What does phase information of oscillatory brain activity tell us about cognitive processes? Neurosci Biobehav Rev 2008; 32: 1001-13.

  6. Buzsáki G. Neural syntax: cell assemblies, synapsembles, and readers. Neuron 2010; 68: 362-85.

  7. Buzsáki G. The structure of consciousness. Nature 2007; 446: 15.

  8. Varela F, Lachaux JP, Rodriguez E, Martinerie J. The brain web: phase synchronization and large-scale integration. Nat Rev Neurosci 2001; 2: 229-39.

  9. Grossberg S. The link between brain learning, attention, and consciousness. Conscious Cogn 1999; 8: 1-44.

  10. Wyart V, Sergent C. The phase of ongoing EEG oscillations uncovers the fine temporal structure of conscious perception. J Neurosci 2009; 29: 12939-41.

  11. Tononi J. An information integration theory of consciousness. BMC Neurosci 2004; 5: 42-64.

  12. Pfurstscheller G. The cortical activation model (CAM). Prog Brain Res 2006; 159: 19-27.

  13. Pfurtscheller G. EEG event-related desynchronization (ERD) and event related synchronization (ERS) En: Niedermeyer E, Lopes da Silva F (eds.). Electroencephalography basic principles, clinical applications, and related fields. 4th Ed. Lippincott Williams & Wilkins; 1998, p. 958-67.

  14. Chelaru MI, Dragoi V. Efficient coding in heterogeneous neuronal populations. Proc Nat Acad Sci USA 2008; 105(42): 16344-9.

  15. Hummel F, Gerloff C. Larger interregional synchrony is associated with greater behavioral success in a complex sensory integration task in humans. Cerebral Cortex 2005; 15: 670-8.

  16. Engel AK, Fries P, Singer W. Dynamic predictions: oscillations and synchrony in top-down processing. Nat Rev Neurosci 2001; 2(10): 704-16.

  17. Ben-Simon E, Podlipsky I, Arieli A, Zhdanov A, Hendler T. Never resting brain: simultaneous representation of two alpha related processes in humans. Plosone 2008; 3: 1-8.

  18. VanDijk H, Schoffelen JM, Oostenveld R, Jensen O. Prestimulus oscillatory activity in the alpha band predicts visual discrimination ability. J Neurosci 2008; 28: 1816-23.

  19. Kopell N, Kramer MA, Malerba P, Whittington MA. Are different rhythms good for different functions? Front Hum Neurosci 2010; 4: 187.

  20. Neuper C, Wörtz M, Pfurtscheller G. ERD/ERS patterns reflecting sensorimotor activation and deactivation. Prog Brain Res 2006; 159: 211-22.

  21. Wörtz M, Pfurstscheller G. Klimesch W. Alpha power dependent light stimulation: dynamics of event-related (de)synchronization in human electroencephalogram. Cogn Brain Res 2004; 20: 256-60.

  22. Landsness E, Bruno MA, Noirhomme Q, Riedner B, Gosseries O, Schnakers C, et al. Electro-physiological correlates of behavioural changes in vigilance in vegetative state and minimally conscious state. Brain 2011; 134: 2222-32.

  23. Sharpless S, Jasper H. Habituation of the arousal reaction. Brain 1956; 79: 655-80.

  24. Morrell LK. Some characteristics of stimulus-provoked alpha activity. Electroencephalogr Clin Neurophysio 1966; 21: 552-61.

  25. Sokolov YN. Higher nervous functions: The orienting reflex. Annu Rev Physiol 1963; 25: 545-80.

  26. Brust-Carmona H. Los cambios de la percepción durante algunos procesos de aprendizaje. Gac Med Mex 1963; 93: 497-503.

  27. Brust-Carmona H, Ramírez-Aboytes F, Sánchez A, Martínez J, Rodríguez MA, Flores Avalos B, Yáńez Suárez O. Cambios del EEG por habituación y condicionamiento en nińos de tres a 15 ańos que acuden al Instituto Nacional de Rehabilitación (INR). Salud Mental 2009; 32: 459-67.

  28. Amochaev A, Salamy A, Alvarez W, Peeke H. Topographic mapping and habituation of event related EEG alpha band desynchronization. Int J Neurosci 1989; 49: 151-5.

  29. Thompson RF. Habituation: a history. Neurobiol Learn Mem 2009; 92: 127-34.

  30. Brust-Carmona H, Valadez G, Flores-Ávalos B, Martínez JA, Sánchez A, Rodríguez MA, Peńaloza Y, Yáńez O. Potencia absoluta de oscilaciones corticales y su distribución topográfica en una muestra de adultos jóvenes en vigilia inactiva y en atención inespecífica. Rev Inv Clin 2013; 65(1): 52-64.

  31. Steriade M. Cellular substrates of brain rhythms. En: Niedermeyer E, Lopes da Silva F (eds.). Electroencephalography Ba sic Principles, Clinical Applications, and Related Fields. 4th ed. Lippincott Williams & Wilkins; 1998, p. 28-75.

  32. Harmony T, Fernández T, Silva J, Bernal J, Díaz-Comas L, Reyes A. EEG delta activity: an indicator of attention to internal processing during performance of mental tasks. Int J Psychophysiol 1996 (1-2); 24: 161-71.

  33. Bruns A, Eckhorn R. Task-related coupling from high-to lowfrequency signals among visual cortical areas in human subdural recordings. Int J Psychophysiol 2004; 51: 97-116.

  34. Womelsdorf T, Fries P. Neuronal coherence during selective attentional processing and sensory-motor integration. J Physiol Paris 2006; 100: 182-93.

  35. Mölle M, Marshall L, Fehm HL, Born J. EEG theta synchronization conjoined with alpha desynchronization indicate intentional encoding. Eur J Neurosci 2002; 15: 923-8.

  36. Basar E, Schurman M, Sakowitz O. The selectively distributed theta system: functions. Int J Psychophysiology 2009; 39: 197- 212.

  37. Klimesch W. EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Rev 2009; 29: 169-95.

  38. Haegens S, Nácher V, Luna R, Romo R, Jensen O. α-Oscillations in the monkey sensorimotor network influence discrimination performance by rhythmical inhibition of neuronal spiking. Proc Natl Acad Sci USA 2011; 108(48): 19377-82.

  39. Barry RJ, Johnstone SJ, Magee CA. EEG differences between eyes-closed and eyes-open resting conditions. Clin Neurophysiology 2007; 118: 2765-73.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Invest Clin. 2014;66