medigraphic.com
SPANISH

Revista Cubana de Oftalmología

ISSN 1561-3070 (Electronic)
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2014, Number 2

<< Back Next >>

Rev Cub Oftal 2014; 27 (2)

Statistical analysis of refractive data

Baldaquín RW, Lapido P
Full text How to cite this article

Language: Spanish
References: 18
Page: 212-236
PDF size: 323.36 Kb.


Key words:

induced astigmatism, decomposition of refractive data.

ABSTRACT

Objective: to describe the decomposition technique into Cartesian coordinates for the statistical analysis of refractive data and the proposal and exemplification of a methodology.
Method: the Cartesian decomposition technique for the statistical analysis of refractive data was reviewed. Sample data were used to exemplify the algorithm. In the statistical analysis, summary measures and hypothesis tests were applied by using Student's t statistic and Hotelling's T2 for univariate and multivariate data, respectively.
Results: a method that allows transforming data from one spherocylinder into a point in the three-dimensional space was described and exemplified, by means of the conversion of refraction into three independent orthogonal components of a Cartesian coordinate system. Unlike other mathematically equivalent methods, this technique brought about three components with optical significance to describe the sphere and the cylinder (the spherical equivalent and two Jackson crossed cylinders), thus eliminating the directional characteristics of data. In this system of Cartesian coordinates, the operations in real numbers are defined (addition, multiplication by scalars, among others), allowing mathematical and statistical analysis based on 3 × 1 matrices. The most common clinical measures that can be estimated with such a method are astigmatism variation, induced astigmatism, refractive surprise or error of the refractive procedure, mean astigmatism, comparison of population means, correlations, etc.
Conclusions: the Cartesian representation of refraction is a non-polar notation that facilitates the graphical representation and statistical analysis of individual and population data.


REFERENCES

  1. Thibos LN, Horner D. Power vector analysis of the optical outcome of refractive surgery. J Cataract Refract Surg. 2001;27(1):80-5.

  2. Thibos LN, Applegate RA, Schwiegerling JT, Webb R. Standards for reporting the optical aberrations of eyes. Journal of refractive surgery. 2002;18(5):S652-60.

  3. Alpins NA, Goggin M. Practical Astigmatism Analysis for Refractive Outcomes in Cataract and Refractive Surgery. Survey of Ophthalmology. 2004;49(1):109-22.

  4. Kaye SB, Harris WF. Analyzing refractive data. J Cataract Refract Surg. 2002;28(12):2109-16.

  5. Næser K. Assessment and Statistics of Surgically Induced Astigmatism. Aarhus, Denmark: University of Aarhus; 2008.

  6. Holladay JT, Moran JR, Kezirian GM. Analysis of aggregate surgically induced refractive change, prediction error and intraocular astigmatism. J Cataract Refract Surg. 2001;27(1):61-79.

  7. Long WF. A matrix formalism for desentration problems. Am J Optom Physiol Opt. 1976;53(1):27-33.

  8. Harris WF. The Jackson Cross-Cylinder. Part 1: Properties. The South African Optometrist. 2007;66(2):41-55.

  9. Touzeau O, Costantini E, Gaujoux T, Borderie V, Laroche L. Réfraction moyenne et variation de réfraction calculées dans un espace dioptrique. Journal français d'ophthalmologie. 2010;33(9):659-69.

  10. Touzeau O, Gaujoux T, Costantini E, Borderie V, Larouche L. Les différentes expresions «polaires» et «non polaires» de la réfraction. Journal français d'ophtalmologie. 2010;33(1):56-71.

  11. Holladay JT, Dheja DR, Koch DD. Evaluating and reporting astigmatism for individual and aggregate data. J Cataract Refract Surg. 1998;24(1):57-65.

  12. Raasch TW. Spherocylindrical refractive errors and visual acuity. Optom Vis Sci. 1995;72(4):272-5.

  13. Jesson M, Arulmozhivarman P, Ganesan AR. Analysis of refractive errors in the human eye using Shack Hartmann Aberrometry. Acta Ophthalmologica. 2006;84:81-204.

  14. Carvalho LA, Chamon W, Schor P, de Castro JC. Quantitative comparison of different-shaped wavefront sensors and preliminary results for defocus aberrations on a mechanical eye. Arq Bras Oftalmol. 2006 [citado 4 de abril de 2014];69(2). Disponible en: http://www.scielo.br/scielo.php?pid=S0004- 27492006000200019&script=sci_arttext

  15. Rencher AC. Methods of multivariate analysis. Wiley-Interscience publication; 2002.

  16. Stevens J. Applied multivariate statistics for the social sciences. Mahwah, New Jersey: Lawrence Erlbaum Associates, Publishers; 2002.

  17. Hairs JF, Anderson RE, Tatham RL, Black WC. Multivariate data analysis. Englewood Cliffs, NJ: Printice Hall; 1998.

  18. Booth DE. Multivariate Statistical Inference and Applications. Technometrics. 1998;40(4):353-4.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Cub Oftal. 2014;27