medigraphic.com
SPANISH

Revista Mexicana de Ingeniería Biomédica

  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2013, Number 3

<< Back Next >>

Rev Mex Ing Biomed 2013; 34 (3)

Development of a Neuromuscular Junction Model on Surfaces Modified by Plasma Polymerization

Zuñiga-Aguilar E, Godínez R, Ramírez-Fernández O, Morales J, Olayo R
Full text How to cite this article

Language: English
References: 19
Page: 217-226
PDF size: 1225.29 Kb.


Key words:

cell co-culture, neuromuscular junction, plasma polymerization, polypyrrole.

ABSTRACT

The aim of this work is to implement a biological model of neuromuscular junctions to study the mechanisms involved in intra and inter cellular processes using cell co-cultures. To optimize growth and development of the neuromuscular junction, cells were seeded on plasma polymerized pyrrole which has proven suitable for other types of cell cultures. The cell lines used were motor neuron NG108-15 and skeletal muscle C2C12. Cells were evaluated according to their morphology and electrophysiological characteristics. To observe the expression of specific proteins of the nerve synapse, immunocytochemical techniques were applied using dying antibodies. Proteins localized in nerve terminals were dyed and imaged by fluorescence microscopy. Images of cell co-cultures showed the formation of neuromuscular junctions. The preparation of neuromuscular junctions described in this work will allow the study of the mechanisms involved in their functions.


REFERENCES

  1. Engel A.G. (1999). “Anatomy and molecular architecture of the neuromuscular junction”. En: Myasthenia Gravis and Myasthenic Syndromes. Engel AG (eds). Contemporary Neurology Series. Oxford University Press, New York.

  2. Vincent A. (2008). “Autoantibodies in neuromuscular transmission disorders”. [Journal Article], Ann Indian Acad Neurol; Vol.11(3):140-145.

  3. Vrolix K., Fraussen J., Molenaar P.C., Losen M., Somers V., Stinissen P., De Baets M.H., Martínez-Martínez P. (2010). “The auto-antigen repertoire in myasthenia gravis”. Autoimmunity, Vol.43(5-6):380-400.

  4. Tzartos S.J., Langeberg L., Hochschwender S., Swanson L.W., Linstrom J. (1986). “Characteristics of monoclonal antibodies to denatured Torpedo and to native calf acetylcholine receptor: species, subunit and region specificities”. J Neuroinmunol, Vol. 10:235-253.

  5. Marx A., Wilisch A., Schultz A., Gattenlöhner S., Nenninger R., Müller- Hermelink H.K. (1997). “Pathogenesis of myasthenia gravis”. Virchows Arch Vol.430:355-364.

  6. Takahashi T., Nakajima Y., Hirosawa K., Nakajima S., and Onodera K. (1987). “Structure and Physiology of Developing Neuromuscular Synapses in Culture”. Journal Neuroscience Vol. 7 (2):473-481.

  7. Shimada Y., Fischman D. A., and Moscona A. A. (1969), “The development of nervemuscle junctions in monolayer cultures of embryonic spinal cord and skeletal muscle cells”. The Journal of Cell Biology Vol. 43 (2): 382-387.

  8. Wilson, GG, Karlin, A. (2001). “Acetylcholine receptor channel structure in the resting, open and desensitized states probed with the substituted-cysteineaccesibility method”. Proc. Natl. Acad. Sci. USA. Vol 98(3):1241-1248.

  9. Corringer P.-J. et al. (2000). “Nicotinic receptors at the amino acid level”. Ann. Rev. Pharmacol. Toxicol. Vol.40:431- 458.

  10. Courtney J., Steinbach J.H. (1981). “Age changes in neuromuscular junction morphology and acetylcholine receptor distribution on rat skeletal muscle fibres”, J. Physiology Vol. 320: 435-447.

  11. Matthews-Bellinger J., Salpeter M. (1983). “Fine structural distribution of acetylcholine receptors at developing mouse neuromuscular junctions”. The Journal of Neuroscience Vol. 3(3):644-657.

  12. Coutinho de Barcelos C., Assunção Braga A., Da Silva Braga F., Braga G., Antoniassi S., Oshima Y., Rodrigues L. (2008). “In Vitro and In Vivo Neuromuscular Effects of Atracurium and Rocuronium in Rats Treated with Carbamazepine for Seven Days”. Rev Bras Anestesiol Vol. 58(2):137-151.

  13. Michikawa M, Kobayashi T, Tsukagoshi H.(1991). “Early events of chemical transmission of newly formed neuromuscular junctions in monolayers of human muscle cell co cultered with fetal rat spinal cord explants”. Brain Res Vol.538: 79-85.

  14. Wyskovsky W, Hohenegger M, Plank B, Hellamnn G, Klein S, Suko J.(1990). “Activation and inhibition of the calciumrelease channel of isolated skeletal muscle heavy sarcoplasmic reticulum”. Eur J Biochem Vol. 194: 549-559.

  15. Jiang J., Choi R., Siow N., Lee H., Wan D. and Tsim K. (2003). “Muscle Induces Neuronal Expression of Acetylcholinesterase in Neuron-Muscle Co-culture”. The Journal of Biological Chemistry Vol. 278:45435-45444

  16. Das M., Rumsey J.W., Gregory C. A., Bhargava N., Kang J.F., Molnar P., Riedel L., Guo X. and Hickman J. J.(2007). “Embryonic motoneuron-skeletal muscle co-culture in a defined system”. Neuroscience Vol.146:481-488.

  17. Pérez-Tejada E., Gómez Quiroz L. E., Morales J., Gutiérrez M. C., Olayo M. G., Cruz G. J., Olayo R. (2007). “Cultivo de Hepatocitos sobre vidrio modificado con un polímero de pirrol sintetizado por plasma”. Superficies y Vacio Vol. 21 (3): 10-14.

  18. Olayo R., Ríos C., Salgado-Ceballos H., Morales J. (2008). “Tissue spinal cord response in rats after implants of polypirrole and polyethylene glycol obtained by plasma” J. Mater Sci: Mater Med. Vol. 19:817-826.

  19. Cruz G.J., Morales J., Olayo R. (1999). “Films obtained by plasma polymerization of pyrrole” Thin Solid Films, Vol. 342:119- 126.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Mex Ing Biomed. 2013;34