medigraphic.com
SPANISH

Revista del Hospital Juárez de México

  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2016, Number 1-2

<< Back Next >>

Rev Hosp Jua Mex 2016; 83 (1-2)

Perfil glicémico durante el ayuno en ratas macho-Wistar con diabetes tipo 2

Figueroa-García MC, Rivera-Valencia M, Sosa-Durán EE, Saavedra-Molina FA, Mejía-Zepeda R
Full text How to cite this article

Language: Spanish
References: 19
Page: 23-30
PDF size: 153.16 Kb.


Key words:

Type 2 diabetes mellitus, hyperglycemia, fasting, Wistar rats.

ABSTRACT

The fasting is a factor that modifies glycaemia, which is regulated by the supply and the kind of carbohydrates in the diet, the lasting of the ingestion, the absorption time, as well as on the insulin and glucagon secretion, and its coordinated effects on the glucose metabolism. In the other hand, the glycaemia is also affected by factors such as: age, physiological state, illness-health processes, nutritional condition, and stressing environmental factors. It is important to indicate the appropriate fasting time for the determination of the blood glucose concentration (BGC) in these periods, minimizing the stress from long fasting, especially in diabetic subjects. In the present study, it was determined the required fasting time for evaluation of blood glucose in male rats with type 2 diabetes. For these purposes, 48-h-old male Wistar rats were administered i.p. with streptozotocin (STZ) at 125 mg/kg of body weight. In order to know the metabolic alterations, the concentrations of glucose, cholesterol, and triglycerides were measured in blood. Every 30 days the glycemic profile during fasting (GPF) was done and then after the glucose tolerance curve (GTC). The obtained results shown that the glycemic control tend to stabilize as long as the age of normoglycemic rats increase reaching basal concentrations (4.4 mM) at 4 h postprandrio. However, in diabetic animals the control of glycaemia varies according with the period of life, in such a way that during infant and puberty, the concentrations of basal glycaemia (4.4 and 6 mM, respectively) are obtained with a fasting of 4 h, whereas in adult animals there is a negative correlation between the BGC and the time, reaching sometimes values ‹ 4.0 mM. The literature points out an 8 h fasting for evaluation of glycaemia in healthy males, but the results obtained in our work shows that in type 2 diabetic rats, the best moment for measurement of this parameter is at 4 h.


REFERENCES

  1. American Diabetes Association. Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 2011; 34: S62-S69.

  2. Moebus S, Göres L, Lösch C, Karl-Heinz J. Impact of time since last caloric intake on blood glucose levels. Eur J Epidemiol 2011; 26: 719-28.

  3. Gil HA, Sánchez CF. Función y metabolismo de los nutrientes. 2015. Disponible en: https://www.biol.unlp.edu.ar/ qcabiolfarmacia/LN-fymnutrientes.pdf

  4. Saz PP, Ortiz LM. Fisiología y Bioquímica del Ayuno. Medicina Naturista 2007; 1(1): 10-9.

  5. Feudtner C. Diabetes: la paradoja de la tecnología moderna. Boletín de la Organización Mundial de la Salud 2011; 89: 90-1.

  6. Figueroa GMC, Pérez HIH, Mejía ZR. Caracterización de un modelo de diabetes tipo 2 en ratas Wistar hembra. Rev MVZ Córdoba 2013; 18(Supl.): 3699-707.

  7. NOM-062-ZOO-1999. Diario Oficial. Especificaciones técnicas para el Cuidado y Uso de los Animales de Laboratorio. México: Norma Oficial Mexicana; 2001.

  8. Simpson IA, Carruthers A, Vannucci SJ. Supply and demand in cerebral energymetabolism: the role of nutrient transporters. Journal of Cerebral Blood Flow & Metabolism 2007; 27: 1766-91.

  9. Wilmore DW, Mason AD, Pruitt BA. Insulin response to glucose in hypermetabolic burn patients. Ann Surg 1976; 183(3): 314-20.

  10. Carvajal ACG, Carrillo SS. Señales moleculares que modulan el metabolismo energético: implicaciones en el desarrollo de obesidad, diabetes y cardiopatías. Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría. Disponible en: http://bq.unam.mx/mensajebioquimico

  11. García de Lorenzo y Mateos A, Rodríguez MJA. Metabolismo en el ayuno y la agresión. Su papel en el desarrollo de la desnutrición relacionada con la enfermedad. Nutr Hosp Suplementos 2013; 6(1): 1-9.

  12. Redd MG, Meszaros K, Roche E. Type 2 diabetes: gluco-lipotoxicity and B-cell dysfunction. Ars Pharmaceutica 2003; 44(4): 313-32.

  13. Voet D, Voet J. Biochemistry. United States: Ed. John Wiley & Sons, Inc.; 1990, p. 1223.

  14. Stumvoll M, Goldstein BJ, Haeften TW. Type 2 diabetes: principles of pathogenesis and therapy. The Lancet 2005; 365(9467): 1333-46.

  15. Claypool MD, Entes LJ. Experimental rodent models of type 2 diabetes: a review. MFECP 2009; 31(4): 249-26.

  16. Nowland MH, Hugunin KMS, Rogers KL. Effects of Short-Term Fasting in Male Sprague-Dawley Rats. Comparative Medicine 2011; 61(21): 138-7.

  17. Brandan N. Interacciones metabólicas. Facultad de Medicina UNNE.

  18. Rowland NE. Food or fluid restriction in common laboratory animals: balancing welfare 7considerations with scientific inquiry. Comparative Medicine 2007; 57: 149-60.

  19. Winfield JC, Kytaysky AS. Endocrine responses to unpredictable environmental events. Stress ar Anti-Stress Hormones? Integrative and Comparative Biology 2002; 42: 600-9.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Hosp Jua Mex. 2016;83