Abanico Veterinario

Contents by Year, Volume and Issue

Table of Contents

General Information

Instructions for Authors

Message to Editor

Editorial Board

>Journals >Abanico Veterinario >Year 2017, Issue 1

Silva-Vega M, Bañuelos-Valenzuela R, Muro-Reyes A, Esparza-Ibarra E, Delgadillo-Ruiz L
Evaluation of seed of guava (Psidium guajava L.) as an alternative in ruminal nutrition
AbanicoVet 2017; 7 (1)

Language: Español
References: 26
Page: 26-35
PDF: 194.24 Kb.

Full text


The nutritional contents of guava flour and germinated guava seeds were evaluated. A proximal analysis and in vitro digestibility were performed. There were significant differences between the flour and germinated guava seeds (p ‹0.01) for a percentage of ash, crude protein, crude fiber and neutral detergent fiber. In the in vitro digestibility, the highest gas production was given by germination, with 40 ml of gas per 200 mg of dry matter. The highest production of volatile fatty acids after in vitro digestibility (48 h) occurred in the germination of guava seed. Basing on these results, it is concluded that the flour and germinated guava seeds have the possibility of being used in the diet of ruminants.

Key words: Guava, proximal analysis, digestibility.


  1. AOAC (Association of Official Analytical Chemists). Official methods of analysis (16th ed.). Arlington, VA. USA: Association of Analytical Chemists. 1995.

  2. BEHARKA AA, Nagaraja TG, Morrill JL, Kennedy GA, Klemm RD. Effects of form of the diet on anatomical, microbial, and fermentative development of the rumen of neonatal calves1. Journal of Dairy Science. 1998. 81(7): 1946-1955. DOI: 10.3168/jds.S0022-0302(98)75768-6.

  3. BERNARDINO NA, Ortiz MA, Martínez AAL, Dávila OG. Guava seed protein isolate: Functional and nutritional characterization. Journal of Food Biochemistry. 2001. 25(1), 77-90. DOI: 10.1111/j.1745-4514.2001.tb00725.x

  4. EWASCHUK JB, Zello GA, Naylor JM, Brocks RB. Metabolic acidosis: separation methods and biological relevance of organic acids and lactic acid enantiomers. Journal of Chromatography B. 2002. 781(1), 39–56. DOI: 10.1016/S1570-0232(02)00500-7

  5. FRANCE J, Siddons RC, Dhanoa MS. Adaptation of compartmental schemes of interpreting isotope dilution data on volatile fatty acid metabolism in the rumen to the non-steady state and for single-dose injection. Journal of Theoretical Biology. 1991. 153(2): 247-254. DOI:10.1016/S0022-5193(05)80425-4.

  6. GEORING HK, Van Soest PJ. Forage fiber analyses (apparatus, reagents, procedures, and some applications). ARS-USDA, Washington, DC Agric. Handbook. 1970. 379.

  7. GUPTA GK, Chahal J, Arora D. Psidium guajava Linn.: Current research and future prospects. Journal of Pharmacy Research. 2011. 4(1): 42–46.

  8. JIMÉNEZ EA, Rincón M, Pulido R, Saura CF. Guava fruit (Psidium guajava L) as a new source of antioxidant dietary fiber. Journal of Agricultural and Food Chemistry. 2001. 49(11), 5489-5493. DOI: 10.1021/jf010147p

  9. JOSEPH B, Priya RM. Phytochemical and biopharmaceutical aspects of Psidium guajava (L.) essential oil: a review. Research Journal of Medicinal Plant. 2011. 5(4): 432–442.

  10. KAUFFMAN W. Influence of the composition of the ration and the feeding frequency on pH regulation in the rumen and on feed intake in ruminants. Livestock Production science. 1976. 3(2): 103-114.

  11. MENKE KH, Steingass H. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal research and development. 1988. 28: 7-55.

  12. MERTENS DR. Predicting intake and digestibility using mathematical models of ruminal function. Journal of Animal Science. 1987. 64(5): 1548-1558.

  13. MEZA N, Bautista D. Morfología de semillas de guayabo (Psidium guajava L.), germinación y emergencia después del remojo en agua. Revista de la Facultad de Agronomía. 2007. 24(01): 265-270.

  14. NRC. Nutrient Requirements of Dary Cattle. 6th ed. National Academy Press. Washington, DC. 2007.

  15. PEREIRA TS, Andrade AD. Germinação de Psidium guajava L. e Passiflora edulis Sims: efeito da temperatura, substrato e morfologia do desenvolvimento pós-seminal. Revista Brasileira de Sementes. 1994. 16(1): 58-62.

  16. PÉREZ AT, Nápoles L, Concepción O, Trujillo R. Multiplicación in vitro de brotes de guayaba (Psidium guajava L.) var. Enana roja cubana EEA 18-40 obtenidos a partir de semillas. Cultivos tropicales. 2002. 23(3): 57-61. http://www.redalyc.org/pdf/1932/193218120008.pdf

  17. DEL PILAR PIM, Fischer G, Corredor G. Determinación de los estados de madurez del fruto de la gulupa (Passiflora edulis Sims.). Agronomía Colombiana. 2007. 25(1): 83-95

  18. RISHIKA D, Sharma R. An update of pharmacological activity of Psidium guajava in the management of various disorders. International Journal of Pharmaceutical Sciences and Research. 2012. 3(10): 3577–3584. DOI: 10.13040/IJPSR.0975-8232.3 (10).3577-84

  19. RYMER C, Huntington JA, Williams BA, Givens DI. In vitro cumulative gas production techniques: History, methodological considerations and challenges. Animal Feed Science and Technology. 2005. 123: 9-30. DOI: 10.1016/j.anifeedsci.2005.04.055

  20. SAGARPA (Secretaria de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación). Atlas agroalimentario 2015, México. 2015. 84-85.

  21. SANDA KA, Grema HA, Geidam YA, Bukar KYM. Pharmacological aspects of Psidium guajava: An update. International Journal of Pharmacology. 2011. 7:316–24. DOI: 10.3923/ijp.2011.316.324

  22. SIAP (Servicio de Información Agroalimentaria y Pesquera). Información digital. www.siap.gob.mx. México. 2012.

  23. SUTTON JD. Digestion and end product formation in the rumen from production rations. In: Ruckebusch Y and Thivend P (Editors) Digestive physiology and metabolism in ruminants (ed. Y. Ruckebusch and P. Thivend). MTP Press, Lancaster. 1980. 271-290. DOI: 10.1007/978-94-011-8067-2_13

  24. VASCO MNL, Guevara RI, Acero GMG, Toro VJF. Chemical composition of seeds and oil of guava (Psidium guajava L.). Scientiae Naturae. 2002. 4(2): 25-32.

  25. WILLAN RL. Guía para la manipulación de semillas forestales, estudio con especial referencia a los trópicos. FAO Montes. 1991. 20(2): 502.

  26. WILLS RH, Lee H, McGlasson B, Graham D. Fisiología y Manipulación de Frutas y Hortalizas Postrecolección. Editorial Acribia, Zaragoza. 1984. 192.

  27. ALMEIDA NR, Beatriz A, Micheletti AC, Arruda EJ. 2013. Ozonized vegetable oils and therapeutic properties: A review. Orbital-The Electronic Journal of Chemistry. 4(4):313-26. ISSN 1984-6428, DOI: 10.17807/orbital.v4i4.467

  28. BRITISH Pharmacopoeia. 2000. Appendix XF, IA, IB. Peroxide value. http://www.uspbpep.com/bp2008/data/899.asp

  29. DÍAZ M, Lezcano I, Molerio J, Hernández F. 2001. Spectroscopic characterization of ozonides with biological activity. Ozone Science and Engineering. 23(1):35-40. ISSN: 1547-6545.DOI: 10.1080/01919510108961986

  30. DÍAZ MF, Gavín JA, Gómez M, Curtielles V, Hernández F. 2006. Study of ozonated sunflower oil using 1H NMR and microbiological analysis. Ozone: Science and Engineering. 28(1):59-63. ISSN: 1547-6545. DOI: 10.1080/01919510500479239

  31. DÍAZ MF, Gavín Sazatornil JA, Ledea O, Hernández F, Alaiz M, Garcés R. 2005. Spectroscopic characterization of ozonated sunflower oil. Ozone: Science and Engineering. 27(3):247-53. ISSN: 1547-6545. DOI: 10.1080/01919510590945822

  32. FERNÁNDEZ TI, Curtiellas Piñol V, Sánchez Urrutia E, Gómez Regueiferos M. 2006. In vitro antimicrobial activity of ozonized theobroma oil against Candida albicans. Ozone: Science and Engineering. 28(3):187-90. ISSN: 1547-6545. DOI: 10.1080/01919510600689380

  33. IORIO FB, Liberatore AM, Koh IH, Otani C, Camilo FF. 2016. Ozonated Mineral Oil: Preparation, Characterization and Evaluation of the Microbicidal Activity. Ozone: Science and Engineering. 38(4):253-60. ISSN: 1547-6545. DOI: 10.1080/01919512.2015.1128801

  34. KIM HS, Noh SU, Han YW, Kim KM, Kang H, Kim HO, Park YM. 2009. Therapeutic effects of topical application of ozone on acute cutaneous wound healing. Journal of Korean Medical Science. 24(3):368-74. ISSN: 1011-8934 DOI: 10.3346/jkms.2009.24.3.368

  35. MARTÍNEZ-SÁNCHEZ G, Re L, Davison GP, Delaporte RH. 2012. Las aplicaciones médicas de los aceites ozonizados: actualización. Revista Española de Ozonoterapia. 2(1):121-39. ISSN: 2174-3215

  36. MONTEVECCHi M, Dorigo A, Cricca M, Checchi L. 2013. Comparison of the antibacterial activity of an ozonated oil with chlorhexidine digluconate and povidone-iodine. A disk diffusion test. New Microbiologica. 36: 289-302. ISSN: 1121-7138

  37. MOUREU S, Violleau F, Ali Haimoud-Lekhal D, Calmon A. 2016. Influence of Storage Temperature on the Composition and the Antibacterial Activity of Ozonized Sunflower Oil. Ozone: Science and Engineering. 38(2):143-149. ISSN: 1547-6545. DOI: 10.1080/01919512.2015.1128319

  38. RAJABI O, Sazgarnia A, Abbasi F, Layegh P. 2015. The activity of ozonated olive oil against Leishmania major promastigotes. Iranian Journal of Basic Medical Sciences. 18(9):915. ISSN: 2008-3874. DOI: 10.22038/IJBMS.2015.5215

  39. SECHI LA, Lezcano I, Nunez N, Espim M, Duprè I, Pinna A, Molicotti P, Fadda G, Zanetti S. 2001. Antibacterial activity of ozonized sunflower oil (Oleozon). Journal of Applied Microbiology. 90(2):279-284. ISSN: 1365-2672. DOI: 10.1046/j.1365-2672.2001.01235.x

  40. SIFONTES AB, Marcos R, Avila EE, Villalobos-Duno HL. 2015. Uso clínico de los aceites ozonizados y su amplio espectro de las aplicaciones. Botica. 35:1-5. ISSN: 2443-4388

  41. SKALSKA K, Ledakowicz S, Perkowski J, Sencio B. 2009. Germicidal properties of ozonated sunflower oil. Ozone: Science and Engineering. 31(3):232-237. ISSN: 1547-6545. DOI: 10.1080/01919510902838669

  42. TRAVAGLI V, Zanardi I, Bocci V. 2009. Topical applications of ozone and ozonated oils as anti-infective agents: an insight into the patent claims. Recent Patents on Anti-infective Drug Discovery. 4(2):130-142. ISSN: 2212-4071. DOI: 10.2174/157489109788490271

>Journals >Abanico Veterinario >Year 2017, Issue 1

· Journal Index 
· Links 

Copyright 2019