medigraphic.com
SPANISH

Revista Mexicana de Neurociencia

Academia Mexicana de Neurología, A.C.
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2017, Number 4

<< Back Next >>

Rev Mex Neuroci 2017; 18 (4)

Neuron specific enolase, S100β protein and executive function in hypertensive patients

García ML, Borges A, González QA, González GS, Wong CA, Álvarez GMÄ
Full text How to cite this article

Language: Spanish
References: 28
Page: 15-23
PDF size: 322.01 Kb.


Key words:

arterial hypertension, neural damage, serum markers, neuron specific enolase, S100β, executive function.

ABSTRACT

Introduction: the hypothesis of a relation between the biochemical markers and cognitive variables is based on the increased blood levels of certain proteins are indicators of neural damage and the cognitive processes depends on the integrity of neural networks distributed in the whole brain.
Objective: to determinate the association between serum markers neuron specific enolase (NSE) and S100β protein with the executive functions in hypertensive patients.
Methods: 43 hypertensive patients (22 women and 21 men) were included. Mean age was 63.4 ± 12.4 years, 17 patients had suffered ischemic stroke and 26 patients had not. Serum markers were determined and cognitive processes (sustained attention, operative visual memory and executive functions) were evaluated. Mann- Whitney U-test was used to determine the relationship between the levels of both serums markers and the presence of stroke. A general linear model was employed to determine the association between the cognitive variables and serum concentrations of both enzymes.
Results: The mean of serum levels of NSE and S100β were 13.4 (±8.9) µg/L and 137.2 (±111.1) ng/L respectively. Patients with stroke history tended to have higher levels of both enzymes than those without stroke, but not statistically significant (NSE: Z = -1.04 p= 0.29 and S100β: Z= -1.56 p= 0.12). A multivariate analysis showed that higher serum levels of NSE (p=0.005 r=0.47) and S100β protein (p=0.02 r =0.42) were indicative of a delayed reaction time to correct responses in Stroop´s test.
Conclusion: NSE and S100β could be considered biochemical markers of incipient executive dysfunction in hypertensive patients.


REFERENCES

  1. Marchi N, Cavaglia M, Fazio V, Bhudia S, Hallene K, Janigro D. Peripheral markers of blood-brain barrier damage. Clin Chim Acta. [Research Support, U.S. Gov’t, P.H.S.Review]. 2004 Apr;342(1-2):1- 12. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/15026262.

  2. Haupt WF, Chopan G, Sobesky J, Liu WC, Dohmen C. Prognostic value of somatosensory evoked potentials, neuron-specific enolase, and S100 for short-term outcome in ischemic stroke. J Neurophysiol. 2016 Mar 1;115(3):1273-8. Disponible en: http://www.ncbi.nlm.nih.gov/ pubmed/26745251.

  3. Isgro MA, Bottoni P, Scatena R. Neuron-Specific Enolase as a Biomarker: Biochemical and Clinical Aspects. Adv Exp Med Biol. [Review]. 2015;867:125-43. Disponible en: http://www.ncbi.nlm.nih.gov/ pubmed/26530364.

  4. González-Quevedo A, González-García S, Fernández-Concepción O, Santiesteban-Freixas R, Quevedo-Sotolongo L, Menéndez-Saínz MC, et al. Increased serum S-100B and neuron specific enolase- potential markers of early nervous system involvement in essential hypertension. Clin Biochem. 2011;44:154-9.

  5. Bressler SL, Menon V. Large-scale brain networks in cognition: emerging methods and principles. Trends Cogn Sci. [Research Support, U.S. Gov’t, Non-P.H.S. Review]. 2010 Jun;14(6):277-90. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/20493761.

  6. Roger C, Palmier L, Louart B, Molinari N, Claret PG, de la Coussaye JE, et al. Neuron specific enolase and Glasgow motor score remain useful tools for assessing neurological prognosis after out-of-hospital cardiac arrest treated with therapeutic hypothermia. Anaesthesia, critical care & pain medicine. 2015 Aug;34(4):231-7. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/26324761.

  7. Lu K, Xu X, Cui S, Wang F, Zhang B, Zhao Y. Serum neuron specific enolase level as a predictor of prognosis in acute ischemic stroke patients after intravenous thrombolysis. J Neurol Sci. 2015 Dec 15;359(1-2):202-6. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/26671113.

  8. Schmidt AP, Tort AB, Amaral OB, Walz R, Vettorazzi-Stuckzynski J, Martins-Costa SH, et al. Serum S100B in pregnancy-related hypertensive disorders: a case-control study. Clin Chem. [Research Support, Non-U.S. Gov’t]. 2004 Feb;50(2):435-8. Disponible en: http://www.ncbi.nlm.nih.gov/ pubmed/14752015.

  9. Gruden MA, Elistratova EI, Kudrina MV, Karlina VP, Deryabina IS, Semenova IM, et al. Content of S100b protein, HLDF24 peptide and autoantibodies to these factors as potential biomarkers for arterial hypertension in blood serum of healthy people. Bull Exp Biol Med. [Research Support, Non-U.S. Gov’t]. 2014 Feb;156(4):426-9. Disponible en: http://www.ncbi.nlm.nih.gov/ pubmed/24771419.

  10. González-García S, González-Quevedo A, Fernández-Concepción O, Peña-Sánchez M, Menéndez- Saínz C, Hernández-Díaz Z, et al. Short-term prognostic value of serum neuron specific enolase and S100B in acute stroke patients. Clin Biochem. [Research Support, Non-U.S. Gov’t]. 2012 Nov;45(16- 17):1302-7. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/22820433.

  11. González-Quevedo A, González-García S, Hernández-Díaz Z, Fernández-Concepción O, Quevedo- Sotolongo L, Peña-Sánchez M, et al. Serum neuron specific enolase could predict subclinical brain damage and the subsequent occurrence of brain related vascular events during follow up in essential hypertension. J Neurol Sci. 2016 Apr 15;363:158-63. Disponible en: http://www.ncbi.nlm. nih.gov/pubmed/27000243.

  12. Gouw AA, Seewann A, van der Flier WM, Barkhof F, Rozemuller AM, Scheltens P, et al. Heterogeneity of small vessel disease: a systematic review of MRI and histopathology correlations. J Neurol Neurosurg Psychiatry. 2011;82:126-35.

  13. Henskens LH, Kroon AA, van Oostenbrugge RJ, Gronenschild EH, Hofman PA, Lodder J, et al. Associations of ambulatory blood pressure levels with white matter hyperintensity volumes in hypertensive patients. J Hypertens. 2009a Jul;27(7):1446-52. Disponible en: http://www.ncbi.nlm. nih.gov/pubmed/19502993.

  14. Henskens LH, van Oostenbrugge RJ, Kroon AA, Hofman PA, Lodder J, de Leeuw PW. Detection of silent cerebrovascular disease refines risk stratification of hypertensive patients. J Hypertens. 2009b Apr;27(4):846-53. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/19300113.

  15. Sierra C. Essential hypertension, cerebral white matter pathology and ischemic stroke. Curr Med Chem. 2014;21(19):2156-64.

  16. Alvarez JA, Emory E. Executive function and the frontal lobes: a meta-analytic review. Neuropsychol Rev. [Comparative Study Research Support, N.I.H., Extramural Review]. 2006 Mar;16(1):17-42. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/16794878.

  17. Ardila A. On the evolutionary origins of executive functions. Brain Cogn. [Review]. 2008 Oct;68(1):92-9. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/18397818.

  18. Rosvold HE, Mirsky AF, Sarason I, Bransome EDJ, Beck LH. A continuous performance test of brain damage. Journal of Consulting Psycology 1956;20(5):343-50.

  19. Álvarez M, Iglesias Fernández C, Rodríguez Sánchez A, Dulín Íñiguez E, Rodríguez Arnao MD. Episodes of overtreatment during the first six months in children with congenital hypothyroidism and their relationships with sustained attention and inhibitory control at school age. Horm Res Paediatr. 2010;74(2):114-20.

  20. Wechsler D. Wechsler Memory Scale- revised manual. City: Psychological Corporation1987.

  21. Borges A, Quevedo L, Wong A, Cruz T, Gómez-Jarabo G, Álvarez M, et al. Memoria visual en el envejecimiento sano: Comparación de muestras de España y Cuba. Revista Argentina de Alzheimer y Otros Trastornos Cognitivos. 2012;15:14-9.

  22. Stroop JR. Studies of interference in serial verbal reactions. J Exp Psychol. 1935;18:643– 62.

  23. Álvarez M, Carvajal F, Fernández Yero JL, Carlos N, Mar C, Robaina R, et al. Manual de trabajo de la red nacional para la evaluación neurocognitiva del niño con hipotiroidismo congénito. La Habana: UNICEF; 2006.

  24. Grant DA, Berg EA. A behavioral analysis of degree of reinforcement and ease of shifting to new responses in a Weigl-type card-sorting problem. J Exp Psychol. 1948;38(4):404-11.

  25. Videbech P, Ravnkilde B, Gammelgaard L, Egander A, Clemmensen K, Rasmussen NA, et al. The Danish PET/depression project: performance on Stroop’s test linked to white matter lesions in the brain. Psychiatry Res. [Research Support, Non-U.S. Gov’t]. 2004 Feb 15;130(2):117-30. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/15033182.

  26. Takeuchi H, Taki Y, Sassa Y, Hashizume H, Sekiguchi A, Nagase T, et al. Regional gray and white matter volume associated with Stroop interference: evidence from voxel-based morphometry. Neuroimage. [Research Support, Non-U.S. Gov’t]. 2012 Feb 1;59(3):2899-907. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/21988892.

  27. Taylor SF, Kornblum S, Lauber EJ, Minoshima S, Koeppe RA. Isolation of specific interference processing in the Stroop task: PET activation studies. Neuroimage. [Clinical Trial Controlled Clinical Trial Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. 1997 Aug;6(2):81-92. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/9299382.

  28. Leung HC, Skudlarski P, Gatenby JC, Peterson BS, Gore JC. An event-related functional MRI study of the stroop color word interference task. Cereb Cortex. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. 2000 Jun;10(6):552-60. Disponible en: http://www.ncbi.nlm.nih.gov/ pubmed/10859133.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Mex Neuroci. 2017;18