medigraphic.com
SPANISH

Revista Mexicana de Neurociencia

Academia Mexicana de Neurología, A.C.
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2018, Number 3

<< Back Next >>

Rev Mex Neuroci 2018; 19 (3)

Time-frequency analysis of Mismatch Negativity (MMN) in healthy Mexican preschool children

Granados-Ramos DE, Zamora-Lugo S, Torres-Morales P, Cervantes HJ, Vela-Baizabal C, Castañeda-Villa N, Romero-Esquiliano G
Full text How to cite this article

Language: English
References: 31
Page: 21-39
PDF size: 926.10 Kb.


Key words:

Electroencephalogram, Event- Related Potentials, Event-Related Spectral Perturbations, Inter-Trial Coherence, Audition.

ABSTRACT

Introduction: The MMN is an Event-Related Potential frequently studied in auditory change detection tasks. Recent work using time frequency measures has proved promising in understanding the neurophysiology behind auditory change detection. These measures, unfortunately, have not been fully studied in children.
Objective: The purpose of this study was to describe the spectrotemporal characteristics of the MMN response using words in healthy Mexicans preschool children.
Method: 20 children (10 boys and 10 girls) of preschool age participated a neuropsychological evaluation and an auditory discrimination task during EEG recording. Event Related Spectral Perturbation (ERSP) and Inter-Trial Coherence (ITC) was obtained for frequent and infrequent trials.
Results: The ERP showed a typical MMN and LDN response. ERSP increases in the theta band corresponded to the auditory change detection, though no differences between boys and girls was found.
Conclusions: In Mexican preschool children, the MMN is like what has been previously reported in adults. However, in contrast to similar studies, sex did not influence the neurophysiological measures. Significance: We established parameters for future research in children using the MMN.


REFERENCES

  1. Korpilahti P, Krause CM, Holopainen I, Lang AH. Early and late Mismatch Negativity elicited by words and speech-like stimuli in children. Brain and Language. 2001: 76(3); 332-9. http://dx.doi. org/10.1006/brln.2000.2426

  2. Ulanovsky N, Las L, Nelken I. Processing of low-probability sounds by cortical neurons. Nature Neuroscience. 2003; 6(4): 391-398. http://dx.doi.org/10.1038/nn1032

  3. Grimm S, Escera C, Slabu L, Costa-Fadeilla J. Electrophysiological evidence for the hierarchical organization of auditory change detection in the human brain. Psychophysiology. 2011; 48(3): 377- 84. http://dx.doi.org/10.1111/j.1469-8986.2010.01073.x

  4. Shiga T, Althen H, Cornella M, Zarnowiec K, Yabe H, Escera, C. Deviance-related response along the auditory hierarchy: combined FFR, MLR and MMN evidence. PLoS ONE. 2015; 10(9): 1-14 e0136794. http://dx.doi.org/10.1371/journal.pone.0136794

  5. Näätänen R, Gaillard AWK, Mäntysalo. Early selective-attention effect on evoked potential reinterpreted. Acta Psychologica. 1978: 42; 313–329. http://dx.doi.org/10.1016/0001- 6918(78)90006-9

  6. Cong F, Kalyakin I, Huttunnen-Scott T, Li H, Lyytinen H, Ristaniemi T. Singletrial based independent component analysis on Mismatch Negativity in children. International Journal of Neural Sciences. 2010; 20(49): 279-92. http://dx.doi.org/10.1142/S0129065710002413

  7. Näätänen R, Paavilainen P, Rinne T, Alho K. The mismatch negativity (MMN) in basic research of central auditory processing: A review. Clinical Neurophysiology. 2007; 118(12): 2544-90. http:// dx.doi.org/10.1016/j.clinph.2007.04.026

  8. Näätänen R, Kujala T, Winkler I. Auditory processing that leads to conscious perception: a unique window to central auditory processing opened by the mismatch Negativity and related responses. Psychophysiology. 2011; 48: 4-22. http://dx.doi.org/10.1111/j.1469-8986.2010.01114.x

  9. Näätänen R, Kujala T, Escera C, Baldeweg T, Kreegipuu K, Carlson S, Ponton C. The mismatch negativity (MMN). A unique to disturbed central auditory processing in ageing and different clinical conditions. Clinical Neurophysiology. 2012: 123(3); 424- 458. http://dx.doi.org/10.1016/j. clinph.2011.09.020

  10. Luck, SJ. An introduction to the event-related potential technique. 2th ed. Cambridge, England: The MIT Press. 2014: 85-87.

  11. Bishop DVM, Hardiman MJ, Barry JG. Is auditory discrimination mature by middle childhood? A study using time–frequency analysis of mismatch responses from 7 years to adulthood. Developmental Science. 2011: 14(2); 402–16. https://doi.org/10.1111/j.1467-7687.2010.00990.x

  12. Strotseva-Feinschmidt A, Cunitz K, Friederici AD, Gunter TC. Auditory discrimination between function words in children and adults: a mismatch negativity study. Frontiers in Psychology. 2015; 6: 1-9. https://doi.org/10.3389/fpsyg.2015.01930

  13. Ahmadi SZZ, Mahmoudian S, Ashayeri H, Allaeddini F, Farhadi M. Electrophysiological and phonological change detection measures of auditory word processing in normal Persian-speaking children. International Journal of Pediatric Otorhinolaryngology. 2016: 90; 220-226. https://doi. org/10.1016/j.ijporl.2016.09.014

  14. Ervast L, Hämäläinen JA, Zachau S, Lohvansuud K, Heinänen K, Veijola M, Heikkinen E, Suominen K, Luotonen M, Lehtihalmes M, Leppänen, PHT. Event-related brain potentials to change in the frequency and temporal structure of sounds in typically developing 5–6-year-old children. International Journal of Psychophysiology. 2015: 98(3); 413–425. https://doi.org/10.1016/j. ijpsycho.2015.08.007

  15. Costa-Faidella J, Baldeweg T, Grimm S, Escera C. Interactions between “what” and “when” in the auditory system: temporal predictability enhances repetition suppression. The Journal of Neuroscience. 2011; 31(50): 18590-7. http://dx.doi.org/0.1523/JNEUROSCI.2599-11.2011

  16. Ponton CW, Eggermont JJ, Khosla D, Kwong B, Don, M. Maduration of human central auditory ystem activity: Separating auditory evoked potentials by dipole source 120 modeling. Clinical Neurophysiology. 2002; 113(3): 407-420. http://dx.doi.org/10.1016/S1388-2457(01)00733-7

  17. Martin BA, Tremblay KL, Korczak P. Speech Evoked Potentials: From the laboratory to clinic. Ear and Hearing. 2009; 29(3): 285-313. http://dx.doi.org/10.1097/aud.0b013e3181662c0e

  18. Nuñez-Peña MI, Corral MJ, Escera C. Potenciales evocados cerebrales en el contexto de la investigación psicológica: una actualización. Anuario de Psicología. 2004; 35: 3-21.

  19. Sussman A, Steinscheneider M, Lee W, Lawson, K. Auditory scene analysis in school-aged children with developmental language disorders. International Journal of Psychophisiology. 2014; 95: 13-24. http://dx.doi.org/1016/j.ijpsycho.2014.02.002

  20. Granados-Ramos D, Torres-Morales P, Cervantes-Méndez HJ, Castañeda-Villa N, Romero- Esquiliano G. Mismatch Negativity (MMN) y el lenguaje en niños preescolares hablantes del idioma español. Revista Chilena de Neuropsicología. 2013; 8: 1-5, http://dx.doi.org/10.5839/ rcnp.2013.0801.01

  21. Cohen MX. Analyzing neural time series data: Theory and practice. Cambridge, England: The MIT Press. 2014: 55-57.

  22. Shanin AJ, Picton TW, Miller LL. Brain oscillations during semantic evaluation of speech. Brain and cognition. 2009; 70(3): 259-266. https://doi.org/10.1016/j.bandc.2009.02.008

  23. Fujimoto T, Okumurab E, Kodabashia A, Takeuchia K, Otsuboa T, Nakamuraa K, Yatsushiroa K, Sekinec M, Kamiyaa S, Shimookia, S. Tamurac T. Sex Differences in Gamma Band Functional Connectivity Between the Frontal Lobe and Cortical Areas During an Auditory Oddball Task, as Revealed by Imaginary Coherence Assessment. The Open Neuroimaging Journal. 2016; 10: 85-101. https://doi.org/10.2174/1874440001610010085

  24. Matute E, Rosselli M, Ardila A, Ostrosky-Solís F. Evaluación Neuropsicológica Infantil (ENI): Manual de Aplicación. México: Manual Moderno. 2007: 13-19.

  25. De Lathauwer L, De Moor B, Vandewalle J. An introduction to independent component analysis. Journal of Chemometrics. 2000; 14: 123-49. http://dx.doi.org/10.20982/tqmp.06.1.p031

  26. Kuuluvainen S, Alku P, Makkonen T, Lipsanen J, Kujala T. Cortical speech and non-speech discrimination in relation to cognitive measures in preschool children. European Journal of Neuroscience. 2016; 43: 738–50. http://dx.doi.org/10.1111/ejn.13141

  27. Näätanen R, Gaillard AWK, Mantysalo S. Brain potential correlates of voluntary and involuntary attention. In Kornhuber AHM, Deecke L. (Eds.). Motivation, motor and sensoryprocesses of the brain: elecrricalporentials, behavior and clinical use. Amsterdam: Elsevier, 1980: 343-348

  28. Garrido MI, Kilner JM, Stephan KE, Friston KJ. The mismatch negativity: a review of underlying mechanisms. Clinical Neurophysiology. 2009; 120(3): 453-63. http://dx.doi.org/10.1016/j. clinph.2008.11.029

  29. Cervera-Mérida JF, Ygual-Fernández A. Evaluación de la discriminación de habla en preescolares: comparación de las pruebas ABX y AX. Revista de Logopedia, Foniatria y Audiología. 2013; 33(2): 69- 82. http://dx.doi.org/10.1016/j.rlfa.2013.04.003

  30. Power AJ, Mead N, Barnes L, Goswami U. Neural entrainment to rhythmic speech in children with developmental dyslexia. Frontiers in Human Neuroscience. 2013; 7(777): 16-34. http://dx.doi. org/10.3389/fnhum.2013.00777

  31. Fuentemilla LI, Marco-Pallarésa J, Münte TF, Grau C. Theta EEG oscillatory activity and auditory change detection. Brain Research. 2008; 1220: 93-101. http://dx.doi.org/10.1016/j. brainres.2007.07.079




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Mex Neuroci. 2018;19