medigraphic.com
SPANISH

Medicina Interna de México

Colegio de Medicina Interna de México.
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2020, Number 4

<< Back Next >>

Med Int Mex 2020; 36 (4)

Immunity, inflammation and thrombosis. Trying to understand the infection due to COVID-19

Rodríguez-Weber FL, Rodríguez-Armida M, Nava-Santana CA
Full text How to cite this article

Language: Spanish
References: 20
Page: 557-561
PDF size: 216.71 Kb.


Key words:

COVID-19, Biomarkers, Immune system, Thrombosis.

ABSTRACT

The disease caused by SARS-CoV-2 was first reported on December 2019 and ultimately declared as a pandemic in March 2020. Since then, there has been a lot of information released about the possible mechanisms associated with disease in COVID-19. Several components have been proposed, such as direct viral cytophatic injury, disregulated activation of the immune system and coagulation pathways. These events ultimately lead to multiple organ failure and disseminated intravascular coagulation. Based on reports of large series of patients with the disease it has been shown that certain biomarkers (e.g. ferritin, D-dimer, IL-6, etc.) correlate with disease severity and outcomes. A review of the main biomarkers and their pathophysiology are reviewed in this article.


REFERENCES

  1. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: descriptive study. Lancet 2020; 395: 507-513. DOI: https://doi. org/10.1016/S0140-6736(20)30211-7

  2. Guan W, Ni Z, Hu Y, Liang W, Ou C, He J, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020; 382: 1708-1720. DOI: 10.1056/NEJMoa2002032

  3. Garabelli PJ, Modrall JG, Penninger JM, Ferrairo CM, Chapellell MC. Distinct roles for angiotensin-converting enzyme 2 and carboxypeptidase A in the processing of angiotensins within the murine heart. Exp Physiol 2008; 93(5): 613-21. doi: 10.1113/expphysiol.2007.040246.

  4. Stewart JA, Lazartigues E, Lucchesi PA. The angiotensin converting enzyme 2/Ang-(1-7) axis in the heart: a role for MAS communication? Circ Res 2008; 103(11): 1197-9. doi: 10.1161/CIRCRESAHA.108.189068

  5. Kassiri Z, Zhong J, Guo D, Basu R, Wang X, Liu PP, et al. Loss of angiotensin-converting enzyme 2 accelerates maladaptive left ventricular remodeling in response to myocardial infarction. Circ Heart Fail 2009; 2(5): 446-55. doi: 10.1161/ CIRCHEARTFAILURE.108.840124

  6. Iami Y, Kuba K, Rao S, Huan Y, Guan B, et al. Angiotensinconverting enzyme 2 protects from severe acute lung failure. Nature 2005; 436(7047): 112-6.

  7. Liu Y, Yang Y, Zhang C, Hang F, Wang F, Yuan J, et al. Clinical and biochemical indexes from 2019-NCoV infected patients linked to viral loads and lung injury. Sci China Life Sci 2020; 63(3): 364-74.

  8. Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 2003; 426(6965): 450-4.

  9. Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus- induced lung injury. Nat Med 2005; 11(8): 875-9.

  10. South AM, Tomlinson L, Edmonston D, Hiremath S, Sparks MA. Controversies of renin-angiotensin system inhibition during the COVID-19 pandemic. Nat Rev Nephrol 2020. doi: 10.1038/s41581-020-0279-4

  11. Moore JB, Junw CH. Cytokine release syndrome in severe COVID-19. Science 2020. doi: 10.1126/science.abb8925

  12. Zirui Tay M, Men Poh Ch, Réina L, MacAry PA, Ng LFP. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol 2020. doi: 10.1038/s41577- 020-0311-8

  13. Orbach H, Zandman-Goddard G, Amital H, Barak V, Szekanecz Z, Szucs G, et al. Novel biomarkers in autoimmune diseases: prolactin, ferritin, vitamin D, and TPA levels in autoimmune diseases. Ann NY Acad Sci 2007; 1109: 385- 400. doi: 10.1196/annals.1398.044

  14. Cohen LA, Gutierrez L, Weiss A, Leichtmann-Bardoogo Y, Zhang DL, Crooks DR, et al. Serum ferritin is derived primarily from macrophages through a non-classical secretory pathway. Blood 2010; 116: 1574-1584. doi: 10.1182/ blood-2009-11-253815

  15. Morikawa K, Oseko F, Morikawa S. H- and L-rich ferritins suppress antibody production, but not proliferation, of human B lymphocytes in vitro. Blood 1994; 83: 737-743.

  16. Gray C, Franco A, Arosio P, Hersey P. Immunosuppressive effects of melanoma derived heavy chain ferritin are dependent on stimulation of IL-10 production. Int J Cancer 2001; 92: 843-850. doi: 10.1002/ijc.1269

  17. Lippi G, Favarolo EJ. D-dimer is associated with severity of coronavirus disease 2019: A pooled analysis. Thromb Haemost 2020. doi: 10.1055/s-0040-1709650

  18. Huang C, Wang Y, Li X, Ren L, Zhao J, Fan G, Xu J, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506. https://doi.org/10.1016/S0140-6736(20)30183-5

  19. Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost 2020; 18(4): 844-847. https://doi.org/10.1111/jth.14768

  20. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. China Medical Treatment Expert Group for Covid-19. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020. doi: 10.1056/NEJMoa2002032




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Med Int Mex. 2020;36