medigraphic.com
SPANISH

TIP Revista Especializada en Ciencias Químico-Biológicas

ISSN 2395-8723 (Electronic)
ISSN 1405-888X (Print)
TIP Revista Especializada en Ciencias Químico-Biológicas
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2020, Number 1

<< Back Next >>

TIP Rev Esp Cienc Quim Biol 2020; 23 (1)

The battle against the superbugs: No more antimicrobials, there is no ESKAPE

Chávez-Jacobo VM
Full text How to cite this article

Language: Spanish
References: 55
Page: 1-11
PDF size: 290.20 Kb.


Key words:

ESKAPE bacteria, hospital infections, intrinsic resistance, acquired resistance, selection of resistance.

ABSTRACT

Antimicrobial resistance is one of the greatest challenges of modern medicine. During the last decade, a group of six bacteria have proven not only their ability to relatively “escape” the effects of almost any antimicrobial but also because they are the main cause of hospital infections. These organisms together are known as ESKAPE, acronyms derived from the first letter of the genus taxonomic from the scientific name of each bacteria (Enterococcus spp, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa y Enterobacter spp.) This review aims to describe the main resistance mechanisms associated with this group of bacteria and the impact they have had on the development of new antimicrobial strategies.


REFERENCES

  1. Aminov, R. (2017). History of antimicrobial drug discovery – Major classes and health impact. Biochem. Pharmaco., 133, 4-19. https://doi.org/10.1016/j.bcp.2016.10.001.

  2. Antunes, L. C. S., Visca, P. & Towner, K. J. (2014). Acinetobacter baumannii: evolution of a global pathogen. Pathog. Dis., 71(3), 292-301. https://doi. org/10.1111/2049-632X.12125.

  3. Appelbaum, P. C. (2007). Microbiology of antibiotic resistance in Staphylococcus aureus. Clin. Infect. Dis., 45(3), 165- 170. https://doi.org/10.1086/519474.

  4. Baroud, M., Dandache, I., Araj, G. F., Wakim, R., Kanj, S., Kanafani, Z., Khairallah, M., Sabra, A., Shehab, M., Dbaibo, G. & Matar, G. M. (2013). Underlaying mechanisms of carbapenem resistance in extendedspectrum β-latamase-producing Klebsiella pneumoniae and Escherichia coli isolates at a tertiary care centre in Lebanon: role of OXA-48 and NDM-1 carbapenemases. Int. J. Infect. Dis., 41, 75-79. https://doi.org/10.1016/j. ijantimicag.2012.08.010.

  5. Boubaker, K., Diebold, P., Blanc, D. S., Vandenesch, F., Praz, G., Dupuis, G. & Troillet, N. (2004). Panton- Valentine leukocidin and Staphyloccoccal skin infections in schoolchildren. Emerg. Infect. Dis., 10(1), 121-124. https://doi.org/10.3201/eid1001.030144.

  6. Blair, J. M. A., Webber, M. A., Baylay, A. J., Ogbolu, D. O. & Piddock, L. J. V. (2014). Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol., 13(1), 42-51. https://doi.org/10.1038/nrmicro3380.

  7. Breslow, J. M., Monroy, M. A., Daly, J. M., Meissler, J. J., Gaugham, J., Adler, M. A. & Eisenstein, T. K. (2011). Morphine, but not trauma, sensitizes to systemic Acinetobacter baumannii infections. J. Neuroimmune Pharmacol., 6(4), 551-565. https://doi.org/10.1007/ s11481-011-9303-6.

  8. Brown, D. F. J., Hope, R., Livermore, D. M., Brick, G., Broughton, K., George, R. C. & Reynolds, R. (2008). Non-susceptibility trends among enterococci and nonpneumococcal streptococci from bacteraemias in the UK and Ireland, 2001-06. J. Antimicrob. Chemother 62(2), 75-85. https://doi.org/10.1093/jac/dkn354.

  9. Chambers, H. F. & DeLeo, F. R. (2009). Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat. Rev. Microbiol., 7(9), 629-641. https://doi.org/10.1038/ nrmicro2200. Chávez-Jacobo, V. M. (2018). El sistema de edición genética CRISPR/Cas y su uso como antimicrobiano especifico. TIP Rev. Esp. Cienc. Quím. Biol., 21(2), 116-123. https:// doi.org/10.22201/fesz.23958723e.2018.2.138.

  10. Chávez-Jacobo, V. M., Hernández-Ramírez, K. C., Romo- Rodríguez, P., Pérez-Gallardo, R. V., Campos-García, J., Gutiérrez-Corona, J. F., García-Merinos, J. P., Meza- Carmen, V., Silva-Sánchez, J. & Ramírez-Díaz, M. I. (2018). CrpP is a novel ciprofloxacin-modifying enzyme encoded by the Pseudomonas aeruginosa pUM505 plasmid. Antimicrob. Agents Chemother, 62 (6), e02629- 17. https://doi.org/10.1128/AAC.02629-17.

  11. Chávez-Jacobo, V. M., Hernández-Ramírez, K. C., Silva- Sánchez, J., Garza-Ramos, U., Barrios Camacho, H., Ortiz-Alvarado, R., Meza-Carmen, V., Silva-Sánchez, J. & Ramírez-Díaz, M. I. (2019). Prevalence of the crpP gene conferring decreased ciprofloxacin susceptibility in enterobacterial clinicali solates from Mexican Hospitals. J. Antimicrob. Chemother. DOI: 10.1093/jac/dky562 https://doi.org/10.1093/jac/dky562.

  12. Choi, C. H., Lee, E. Y., Lee, Y. C., Park, T. I., Kim, H. J., Hyun, S. H., Kim, H. J., Hyun, S. H., Kim, S. A., Lee, S. & Lee, J. C. (2005). Outer membrane protein 38 of Acinetobacter baumannii localizes to the mitochondria and induces apoptosis of epithelial cells. Cell Microbiol., 7(8), 1127- 1138. https://doi.org/10.1111/j.1462-5822.2005.00538.x.

  13. Clegg, S. & Murphy, C. N. (2016). Epidemiology and virulence of Klebsiella pneumoniae. Microbiol. Spctr., 4(1), UTI-0005. https://doi.org/10.1128/microbiolspec. UTI-0005-2012.

  14. Crofts, T. S., Gasparrini, A. J. & Dantas, G. (2017). Nextgeneration approaches to understand and combat the antibiotic resistome. Nat. Rev. Microbiol., 15(7), 422- 434. https://doi.org/10.1038/nrmicro.2017.28.

  15. Corkill, J. E., Anson, J. J. & Hart, A. (2005). High prevalence of plasmid-mediated quinolone resistance determinant qnrA in multidrug-resistant Enterobacteriaceae from blood cultures in Liverpool, UK. J. Antimicrob. Chemother, 56, 1115-1117. https://doi.org/10.1093/jac/dki388.

  16. Davin-Regli, A., Lavigne, J. & Pagés, J. (2019). Enterobacter spp.: Update on taxonomy, clinical aspects, and emerging antimicrobial resistance. Clin. Microbiol. Rev. 32(4), e00002-19. https://doi.org/10.1128/CMR.00002-19.

  17. De Champs, C., Sauvant, M. P., Chanal, C., Sirot, D., Gazuy, N., Malhuret, R., Baguet, J. C. & Sirot, J. (1989). Prospective survey of colonization and infection caused by expanded-spectrum-β-lactamases-producing members of the family Enterobacteriaceae in an intensive care unit. J. Clin. Microbiol., 27(12), 2887-2890.

  18. Du, D., Wang-Kan., X., Neuberger, A., Veen, H. W., Pos, K. M., Piddock, L. J. V. & Luisi, B. F. (2018). Multidrug efflux pumps: structure, function and regulation. Nat. Rev. Microbiol., 16(9), 523-239. https://doi.org/10.1038/ s41579-018-0048-6.

  19. D´Costa, V. M., King, E. E., Kalan, L., Morar, M., Sung, W. W. L., Schwarz, C., Froese, D., Zazula, G., Calmels, F., Debruyne, R., Golding, G. B., Poinar, H. N. & Wright, G. D. (2011). Antibiotic resistance is ancient. Nature, 477, 457-561. https://doi.org/10.1038/nature10388.

  20. Duijkeren, E., Schink, A., Roberts, M. C., Wang, Y. & Schwarz, S. (2018). Mechanisms of bacterial resistance to antimicrobial agents. Microbiol. Spectr. 6(1), ARBA- 0019. https://doi.org/10.1128/microbiolspec.ARBA- 0019-2017.

  21. Fisher, K & Phillips C. (2009). The ecology, epidemiology and virulence of Enterococcus. Microbiology, 155, 1749- 1757. https://doi.org/10.1099/mic.0.026385-0.

  22. Gardete, S. & Tomasz, A. (2014). Mechanisms of vancomycin resistance in Staphylococcus aureus. J. Clin. Invest., 124(7), 2836-2840. https://doi.org/10.1172/JCI68834.

  23. Goto, K., Kawamura, K. & Arakawa, Y. (2015). Contribution of QnrA, a plasmid-mediated quinolone resistance peptide, to survival of Escherichia coli exposed to a lethal ciprofloxacin concentration. Jpn. J. Infect. Dis., 68, 196- 202. https://doi.org/10.7883/yoken.JJID.2014.153.

  24. Kang, M., Xie, Y., He, C., Chen, Z. Y., Guo, L., Yang, Q., Liu, J. Y., Du, Y., Ou, Q. S. & Wang, L. L. (2014). Molecular characteristics of vancomycin-resistant Enterococcus feacium from a tertiary care hospital in Chengdu, China. Eur. .J. Clin. Microbiol.. Infect. Dis., 3 3(6), 933-939. https://doi.org/10.1007/s10096-013-2029-z.

  25. Kojima, S. & Nikaido, H. (2013). Permeation rates of penicillins indicate that Escherichia coli porins function principally as nonspecific channels. Proc. Natl. Acad. Sci. U. S. A., 110 (28), E2629-2634. https://doi.org/10.1073/ pnas.1310333110.

  26. Kosmidis, C., Schindler, B. D., Jacinto, P. L., Patel, D., Bains, K., Seo, S. M. & Kaatz, G. W. (2012). Expression of multidrug resistance efflux pump genes in clinical and environmental isolates of Staphylococcus aureus. Int. J. Antimicrob. Agents, 40, 204-209. https://doi. org/10.1016/j.ijantimicag.2012.04.014.

  27. Lavigne, J. P., Sotto, A., Nicolas-Chanoine, M. H., Bouziges, N., Pagés, J. M. & Davin-Regli, A. (2013). An adaptive response of Enterobacter aerogenes to imipenem: regulation of porin balance in clinical isolates. Int. J. Antimicrob. Agents, 41, 130-136. https://doi. org/10.1016/j.ijantimicag.2012.10.010.

  28. Lee, C., Lee, J. H., Park, M., Park, K. S., Bae, I. K., Kim, Y, B., Cha, C., Jeong, B. C. & Lee, S. H. (2017). Biology of Acinetobacter baumannii: Pathogenesis, antibiotic resistance mechanisms, and prospective treatment options. Front Cell Infect. Microbiol., 7, 55. https://doi. org/10.3389/fcimb.2017.00055.

  29. Lee, H. K., Park, Y., Kim, J., Chang, E., Cho, S. G., Chae, H. S. & Kang C. S. (2005). Prevalence of decreased susceptibility to carbapenems among Serratia marcescens, Enterobacter cloacae, and Citrobacter freundii and investigation of carbapenemases. Diagn. Microbiol. Infect. Dis., 52(4), 331-336. https://doi.org/10.1016/j. diagmicrobio.2005.04.012.

  30. Livermore, D. M., Hope, R., Brick, G., Lillie, M. & Reynolds, R. (2008). Non-susceptibility trends among enterobacteriaceae from bacteraemias in the UK and Ireland, 2001-2006. J. Antimicrob. Chemother, 62(2), 41- 54. https://doi.org/10.1093/jac/dkn351.

  31. Lupo, A., Haenni, M. & Madec, J. (2018). Antimicrobial resistance in Acinetobacter sp. and Pseudomonas spp. Microbiol. Spectrum., 6(3), ARBA-0007. https://doi. org/10.1128/microbiolspec.ARBA-0007-2017.

  32. Messi, P., Guerrieri, E., Niederhaussern, S., Sabia, C. & Bondi, M. (2006). Vancomycin-resistant enterococci (VRE) in meat and environmental samples. Int. J. Food Microbiol., 107(2), 218-222. https://doi.org/10.1016/j. ijfoodmicro.2005.08.026.

  33. Mezzatesta, M. L., Gona, F. & Stefani, S. (2012). Enterobacter cloacae complex: clonical impact and emerging antibiotic resistance. Future Microbiol., 7(7), 887-902. https://doi. org/10.2217/fmb.12.61.

  34. J. M. & Arias, C. A. (2016). Mechanism of antibiotic resistance. Microbiol. Spectr. , 4(2), VMF-0016. https:// doi.org/10.1128/microbiolspec.VMBF-0016-2015.

  35. Nakonieczna, J., Wozniak, A., Pieranski, M., Rapacka- Zdonczyk, A., Ogonowska, P. & Grinholc, M. (2019). Photoinactivation of ESKAPE pathogens: overview of novel therapeutic strategy. Future Med. Chem. 11(5), 443-461. https://doi.org/10.4155/fmc-2018-0329.

  36. Nikaido, H. (2003). Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev., 67(4), 593-656. https://doi.org/10.1128/ mmbr.67.4.593-656.2003.

  37. O´Neil, J. (2016). Tackling drug-resistant infections globally: final report and recommendations. Review on antimicrobial resistance. amr-review.org. https://amr review.org/sites/default/files/160518_Final%20paper_ with%20cover.pdf. Revisado el 8 de Agosto de 2019.

  38. Ogier, J. & Serror, P. (2008). Safety assessment of diary microorganisms: The Enterococcus genus. Int. J. Food Microbiol., 126, 291-301. https://doi.org/10.1016/j. ijfoodmicro.2007.08.017.

  39. Pang, Z., Raudonis, R., Glick, B. R., Lin, T. J. & Cheng, Z. (2019). Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol. Adv., 37 (1), 177-192. https://doi. org/10.1016/j.biotechadv.2018.11.013.

  40. Peleg, A. Y., Seifert, H. & Paterson, D. L. (2008). Acinetobacter baumannii: Emergence of a successful pathogen. Clin. Microbiol. Rev., 21(3), 538-582. https://doi.org/10.1128/ CMR.00058-07.

  41. Pumbwe, L. & Piddock, L. J. V. (2000). Two efflux systems expressed simultaneously in multidrug resistant Pseudomonas aeruginosa. Antimicrob. Agents Chemother, 44(10), 2861-2864. https://doi.org/10.1128/ aac.44.10.2861-2864.2000.

  42. Quennan, A. M. & Bush, K. (2007). Carbapenemases: the versatile β-Lactamases. Clin. Microbiol. Rev., 20(3), 440- 458. https://doi.org/10.1128/CMR.00001-07.

  43. Rice, L. B. (2008). Federal funding for the study of antimicrobial resistance in nosocomial pathogens: No ESKAPE. J. Infect. Dis., 197(8), 1079-1081. https://doi. org/10.1086/533452.

  44. Robicsek, A., Strahilevitz, J., Jacoby, G. A., Macielag, M., Abbanat, D., Park, C. H., Buch, K. & Hooper, D. C. (2006). Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acethyltransferase. Nat. Med., 12(1), 83-88. https://doi.org/10.1038/nm1347.

  45. Rossolini, G. M., D´Andrea, M. M. & Mugnaioli, C. (2008). The spread of CTX-M-type extended-spectrum β-lactamases. Clin. Microbio. Infect., 14(1), 33-41. https://doi.org/10.1111/j.1469-0691.2007.01867.x.

  46. Sakoulas, G. & Moellering, R. C. (2008). Increasing antibiotic resistance among methicillin-resistant Staphylococcus aureus strains. Clin. Infect. Dis., 46(5), 360-367. https:// doi.org/10.1086/533592.

  47. Serio, A. W., Keepers, T., Andrews, L. & Krause, K. M. (2018). Aminoglycoside revival: review of a historically important class of antimicrobials undergoing rejuvenation. Eco. Sal. Plus, 8(1), e1-20. https://doi.org/10.1128/ ecosalplus.ESP-0002-2018.

  48. Shore, A. C., Deasy, E. C., Slickers, P., Brenan, G., O´Connell, B., Monecke, S., Ehricht, R. & Coleman, D. C. (2011). Detection of Staphylococcal cassette chromosome mec type XI carrying highly divergent mecA, mecI, mecRI, blaZ, and ccr genes in human clinical isolates of clonal complex 130 methicillinresistant Staphylococcus aureus. Antimicrob. Agents Chemother, 55(8), 3765-3773. https://doi.org/10.1128/ AAC.00187-11.

  49. Smith, C. A. & Baker, E. N. (2002). Aminoglycoside antibiotic resistance by enzymatic deactivation. Curr. Drug Target sInfect. Disord., 2(2), 143-160. https://doi. org/10.2174/1568005023342533.

  50. Sommer, M. A. O., Munck, C., Toft-Kehler, R. S. & Andersson, D. I. (2017). Prediction of antibiotic resistance: time for a new preclinical paradigm? Nat. Rev. Microbiol., 15(11), 689-696. https://doi.org/10.1038/nrmicro.2017.75.

  51. Tacconelli, E., Carrara, E., Savoldi, A., Harbarth. S., Mendelson, M., Monnet, D. L., Pulcini, C., Kahlmeter G., Kluytmans, J., Carmeli, Y., Ovellette, M., Outterson, K., Patel, J., Cavaleri, M., Cox, E. M., Houchens, C. R., Grayson, M. L., Hansen, P., Singh, N., Theuretzbacher, U. & Magrini, N. (2018). Discovery, research, and the development of new antibiotics: the WHO priority list of antibiotics-resistant bacteria and tuberculosis. Lancet Infect. Dis., 18, 318-327. https://doi.org/10.1016/S1473- 3099(17)30753-3.

  52. Tran, Q., Williams, S., Farid, R., Erdemli, G. & Pearlstein, R. (2013). The translocation kinetics of antibiotics through porin OmpC: insights from structure-based solvation mapping using Water Map. Proteins, 81(2), 291-299. https://doi.org/10.1002/prot.24185.

  53. Vestergaard, M., Frees, D. & Ingmer, H. (2019). Antibiotic resistance and the MRSA problem. Microbiol. Spectr., 7(2), GPP3-0057. https://doi.org/10.1128/microbiolspec. GPP3-0057-2018.

  54. Viale, P., Giannella, M., Tedeschi, S. & Lewis, R. (2015). Treatment of MDR-Gram negative infections in the 21st century: a never ending threat for clinicians. Curr. Opin. Phramacol., 24, 30-37. https://doi.org/10.1016/j. coph.2015.07.001.

  55. Wright, P. M., Seiple, I. B. & Myers, A. G. (2014). The evolving role of chemical synthesis in antimicrobial drug discovery. Angew. Chem. Int. Ed. Engl., 53(34), 8840- 8869. https://doi.org/10.1002/anie.201310843.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

TIP Rev Esp Cienc Quim Biol. 2020;23