medigraphic.com
SPANISH

TIP Revista Especializada en Ciencias Químico-Biológicas

ISSN 2395-8723 (Electronic)
ISSN 1405-888X (Print)
TIP Revista Especializada en Ciencias Químico-Biológicas
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2020, Number 1

<< Back Next >>

TIP Rev Esp Cienc Quim Biol 2020; 23 (1)

Hydrogel composites with application in the remotion of heavy metals present in wastewater

Burciaga-Montemayor NG, Claudio-Rizo JA, Cano-Salazar LF, Martínez-Luévanos A, Vega-Sánchez P
Full text How to cite this article

Language: Spanish
References: 40
Page: 1-13
PDF size: 854.67 Kb.


Key words:

heavy metals, adsorption, biopolymers, hydrogel composites.

ABSTRACT

Heavy metal pollution is a problem, that to date has not been mitigated. For this reason, it is necessary to constantly innovate among traditional techniques in order to be able to apply efficient processes in such a way that contaminants can be removed or even recovered to be reincorporated into productive processes. In this context, adsorption is such a versatile technique that its application with materials of different characteristics is viable. Among the materials that have been characterized as efficient adsorbents, are inorganic particles and polymers/biopolymers. These components by themselves have acceptable adsorbent capacities, but in recent years the generation of polymeric matrices in the hydrogel state reinforced with inorganic materials or mixtures of polymeric networks generating composites has been explored to improve or increase the adsorption capacity. Composite hydrogels combine effective adsorption, high specific surface area and easy applicability, so they represent a great alternative for the elimination of heavy metal ions present in aquatic ecosystems. For this reason, the review of the state of the art of materials with adsorbent properties is carried out, as well as the strategies to generate composites in a hydrogel state with properties adapted for the adsorption of heavy metal ions, also contemplating the challenges and areas of opportunity related to generation of this type of innovative materials.


REFERENCES

  1. Ayadi, F., Ammar, S., Nowak, S., Cheikhrouhou-Koubaa, W., Regaieg, Y., Koubaa, M., Monier, J. & Sicard, L. (2018). Importance of the synthesis and sintering methods on the properties of manganite ceramics: The example of La 0.7 Ca 0.3 Mn 03. Journal of Alloys and Compounds, 759, 52- 59. https://doi.org/10.1016/j.jallcom.2018.05.113.

  2. Baig, N., Ihsanullah, Sajid, M. & Saleh, T. A. (2019). Graphenebased adsorbents for the removal of toxic organic pollutants: A review. Journal of Environmental Management, 244, 370-382. https://doi.org/10.1016/j.jenvman.2019.05.047.

  3. Balleño, A., Ríos, N., Aranda, F. J., Morales, J. A. & Katime, I. (2016). Hidrogeles de alginato-quitosano y alginato-sulfato de quitosano para la remoción de iones cobre. Revista Iberoamericana de Polímeros, 17(5), 255-265. http://www. ehu.eus/reviberpol/pdf/SEPT16/Balleno.pdf.

  4. Buonomenna, M. G. (2013). Membrane processes for a sustainable industrial growth. RSC Advances, 3, 5694–5740. https://doi.org/10.1039/C2RA22580H 2.

  5. Burakov, A. E., Galunin, E. V., Burakova, I. V., Kucherova, A. E., Agarwal, S., Tkachev, A. G. & Gupta, V. K. (2018). Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review. Ecotoxicology and Environmental Safety, 148, 702-712. https://doi.org/10.1016/j.ecoenv.2017.11.034.

  6. Carolin, C. F., Kumar, P. S., Saravanan, A., Joshiba, G. J. & Naushad, M. (2017). Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review. Journal of Environmental Chemical Engineering, 5(3), 2782-2799. https://doi.org/10.1016/j.jece.2017.05.029.

  7. Colina, M., Ayala, A., Rincón, D., Molina, J., Medina, J., Yncarte, R., Vargas, J. & Montilla, B. (2014). Evaluación de los procesos para la obtención química de quitina y quitosano a partir de desechos de cangrejos. Escala piloto e industrial. Revista Iberoamericana de Polímeros, 15(1), 21-43. http:// www.ehu.eus/reviberpol/pdf/Ene14/colina.pdf.

  8. Collins, F., Rozhkovskaya, A., Outram, J. G. & Millar, G. J. (2020). A critical review of waste resources, synthesis, and applications for Zeolite LTA. Microporous and Mesoporous Materials, 291,109667. https://doi.org/10.1016/j. micromeso.2019.109667.

  9. Corvo, Y. H., López, E. B., León, V. & Corrales, Y. A. (2014). Obtención de una matriz polimérica a base de celulosa para la adsorción de metales pesados. Revista Iberoamericana de Polímeros, 15(2), 75-84. http://www.ehu.eus/reviberpol/ pdf/MAR14/hernandez.pdf.

  10. Crisóstomo, V. M. B., Ngala, J. K., Alia, S., Dobley, A., Morein, C., Chen, C.-H., Shen, X. & Suib, S.(2007). New Synthetic Route, Characterization, and Electrocatalytic Activity of Nanosized Manganite. Chemistry of Materials, 19(7), 1832-1839. https://doi.org/10.1021/cm062871z.

  11. Dialynas E., Mantzavinos, D. & Diamadopoulos, E. (2008). Advanced treatment of the reverse osmosis concentrate produced during reclamation of municipal wastewater, Water Research, 42, 4603–4608. https://doi.org/10.1016/j. watres.2008.08.008.

  12. Edelstein, M. & Ben-Hur, M. (2018). Heavy metals and metalloids: Sources, risks and strategies to reduce their accumulation in horticultural crops. Scientia Horticulturae, 234, 431-444. https://doi.org/10.1016/j. scienta.2017.12.039.

  13. Escoda, A., Euvrard, M., Lakard, S., Husson, J., Mohamed, A. S. & Knorr, M. (2013). Ultrafiltration-assisted retention of Cu (II) ions by adsorption on chitosan-functionalized colloidal silica particles. Separation and Purification Technology, 118, 25-32. https://doi.org/10.1016/j.seppur.2013.06.017.

  14. Fernández-Constantino, O. (1998). La contaminación y las pequeñas industrias en México. Comercio Exterior, 12, 960-965. http://revistas.bancomext.gob.mx/rce/ magazines/353/3/RCE3.pdf.

  15. González-García, P. (2018). Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications. Renewable and Sustainable Energy Reviews, 82, 1393-1414. https://doi.org/10.1016/j.rser.2017.04.117.

  16. Hong, M., Yu, L., Wang, Y., Zhang, J., Chen, Z., Dong, L., Zan, Q. & Li, R. (2019). Heavy metal adsorption with zeolites: The role of hierarchical pore architecture. Chemical Engineering Journal A, 359, 363-372. https:// doi.org/10.1016/j.cej.2018.11.087.

  17. Hong, T. T., Okabe, H., Hidaka, Y. & Hara, K. (2018). Radiation synthesis and characterization of super-absorbing hydrogel from natural polymers and vinyl monomer. Environmental Pollution B, 242, 1458-1466. https://doi.org/10.1016/j. envpol.2018.07.129.

  18. Ihsanullah Abbas, A., Al-Amer, A. M., Laoui, T., Al-Marri, M. J., Nasser, M. S., Kraisheh, M. & Atieh, M. A. (2016) . Heavy metal removal from aqueous solution by advanced carbon nanotubes: Critical review of adsorption applications. Separation and Purification Technology, 157, 141-161. https://doi.org/10.1016/j.seppur.2015.11.039.

  19. Lee, X. J., Hiew, B. Y. Z., Lai, K. C., Lee, L. Y., Gan, S., Thangalazhy-Gopakumar, S. & Rigby, S. (2019). Review on graphene and its derivatives: Synthesis methods and potential industrial implementation. Journal of the Taiwan Institute of Chemical Engineers, 98, 163-180. https://doi. org/10.1016/j.jtice.2018.10.028.

  20. Liu, P., Jiang, L., Zhu, L., Guo, J. & Wang, A. (2015). Synthesis of covalently crosslinked attapulgite/poly (acrylic acid-coacrylamide) nanocomposite hydrogels and their evaluation as adsorbent for heavy metal ions. Journal of Industrial and Engineering Chemistry, 23, 188-193. https://doi. org/10.1016/j.jiec.2014.08.014.

  21. Nierboer, E. & Richardson, D. M. S. (1980). The replace of the nondescript term << heavy metals >>by a biologically and chemically significant classification of metal ions. Environmental Pollution Series B, 1,3-26. https://doi. org/10.1016/0143-148X(80)90017-8.

  22. Mitra, M., Mahapatra, M., Dutta, A., Roy, J. S. D., Karmakar, M., Deb, M., Mondal, H., Chattopadhyay, P. K., Bandyopadhyay, A. & Singha, N. R. (2019). Carbohydrate and collagen-based doubly-grafted interpenetrating terpolymer hydrogel via N–H activated in situ allocation of monomer for superadsorption of Pb (II), Hg (II), dyes, vitamin-C, and p-nitrophenol. Journal of Hazardous Materials, 369, 746-762. https://doi.org/10.1016/j. jhazmat.2018.12.019.

  23. Noor, N. M., Othman, R., Mubarak, N. M. & Abdullah, E. C. (2017). Agricultural biomass-derived magnetic adsorbents: Preparation and application for heavy metals removal. Journal of the Taiwan Institute of Chemical Engineers, 78, 168-177. https://doi.org/10.1016/j. jtice.2017.05.023.

  24. Roy, C., Dutta, A., Mahapatra, M., Karmakar, M., Roy, J. S. D., Mitra, M., Chattopadhyay, P. K. & Singha, N. R. (2019). Collagenic waste and rubber based resin-cured biocomposite adsorbent for high-performance removal(s) of Hg (II), safranine, and brilliant cresyl blue: A costfriendly waste management approach. Journal of Hazardous Materials, 369, 199-213. https://doi.org/10.1016/j. jhazmat.2019.02.004.

  25. Shams, M., Dehghani, M. H., Nabizadeh, R., Mesdaghinia, A., Alimohammadi, M. & Najafpoor, A. A. (2016). Adsorption of phosphorus from aqueous solution by cubic zeolitic imidazolate framework-8: Modeling, mechanical agitation versus sonication. Journal of Molecular Liquids, 224, 151- 157. https://doi.org/10.1016/j.molliq.2016.09.059.

  26. Shannon, M. A., Bohn, P. W., Elimelech, M., Georgiadis, J. G., Mariñas, B. J. & Mayes, A. M. (2008). Science and technology for water purification in the coming decades. Nature, 452, 301–310. https://doi.org/10.1038/nature06599.

  27. Siddiqui, S. I., Naushad, Mu & Chaudhry, S. A. (2019). Promising prospects of nanomaterials for arsenic water remediation: A comprehensive review. Process Safety and Environmental Protection, 126, 60-97. https://doi. org/10.1016/j.psep.2019.03.037.

  28. Singh, N. B., Nagpal, G., Agrawal, S. & Rachna. (2018). Water purification by using Adsorbents: A Review. Environmental Technology & Innovation, 11, 187-240. https://doi. org/10.1016/j.eti.2018.05.006.

  29. Sönmezay, A., Öncel, M. S. & Bektas, N. (2012). Adsorption of lead and cadmium ions from aqueous solutions using manganoxide minerals. Transactions of Nonferrous Metals Society of China, 22(12), 3131-3139. https://doi. org/10.1016/S1003-6326(12)61765-8.

  30. Vera, C. C., Pérez, N. & Sabino, M. (2016). Efecto de la cantidad de fase interpenetrada lignocelulósica y la composición sobre el proceso de hinchamiento y síntesis de hidrogeles interpenetrados en base a acrilamida. Revista Iberoamericana de Polímeros, 17(4), 170-182. http://www. ehu.eus/reviberpol/pdf/JUL16/chacon.pdf.

  31. Vieira, R. M., Vilela, P. B., Becegato, V. A. & Paulino, A. T. (2018). Chitosan-based hydrogel and chitosan/acidactivated montmorillonite composite hydrogel for the adsorption and removal of Pb+2 and Ni+2 ions accommodated in aqueous solutions. Journal of Environmental Chemical Engineering, 6(2), 2713-2723. https://doi.org/10.1016/j. jece.2018.04.018.

  32. Waheed, A., Mansha, M. & Ullah, N. (2018). Nanomaterialsbased electrochemical detection of heavy metals in water: Current status, challenges and future direction. TrAC Trends in Analytical Chemistry, 105, 37-51. https://doi. org/10.1016/j.trac.2018.04.012.

  33. Wang, J., Wei, L., Ma, Y., Li, K., Li, M., Yu, Y., Wang, L. & Qiu, H. (2013a). Collagen/cellulose hydrogel beads reconstituted from ionic liquid solution for Cu (II) adsorption. Carbohydrate Polymers, 98(1), 736-743. https:// doi.org/10.1016/j.carbpol.2013.06.001.

  34. Wang, W., Zong, L. & Wang, A. (2013b). A nanoporous hydrogel based on vinyl-functionalized alginate for efficient absorption and removal of Pb+2 ions. International Journal of Biological Macromolecules, 62, 225-231. https://doi. org/10.1016/j.ijbiomac.2013.08.038.

  35. Wang, J., Yue, X., Yang, Y., Sirisomboonchai, S., Wang, P., Ma, X., Abudula, A. & Guan, G. (2020). Earth-abundant transition-metal-based bifunctional catalysts for overall electrochemical water splitting: A review. Journal of Alloys and Compounds, 819, 153346. https://doi.org/10.1016/j. jallcom.2019.153346.

  36. Wanna, Y., Chindaduang, A., Tumcharern, G., Phromyothin, D., Porntheerapat, S., Nukeaw, J., Hofmann, H. & Pratontep, S. (2016). Efficiency of SPIONs functionalized with polyethylene glycol bis(amine) for heavy metal removal. Journal of Magnetism and Magnetic Materials, 414, 32-37. https://doi.org/10.1016/j.jmmm.2016.04.064.

  37. . Wen, J., Fang, Y. & Zeng, G. (2018). Progress and prospect of adsorptive removal of heavy metal ions from aqueous solution using metal–organic frameworks: A review of studies from the last decade. Chemosphere, 201, 627-643. https://doi.org/10.1016/j.chemosphere.2018.03.047.

  38. Xu, R., Zhou, G., Tang, Y., Chu, L., Liu, C., Zeng, Z. & Luo, S. (2015). New double network hydrogel adsorbent: Highly efficient removal of Cd (II) and Mn (II) ions in aqueous solution. Chemical Engineering Journal, 275, 179-188. https://doi.org/10.1016/j.cej.2015.04.040.

  39. Xue, X., Cheng, R., Shi, L., Ma, Z. & Zheng, X. (2017). Nanomaterials for water pollution monitoring and remediation. Environmental Chemistry Letters, 15(1), 23- 27. https://doi.org/10.1007/s10311-016-0595-x.

  40. Yu, J. W., Jung, J., Choi, Y.-M., Choi, J. H., Yu, J., Lee, J. K., You, N. H. & Goh, M. (2016). Enhancement of the crosslink density, glass transition temperature, and strength of epoxy resin by using functionalized graphene oxide cocuring agents. Polymer Chemistry, 7(1), 36-43. https://doi. org/10.1039/C5PY01483B.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

TIP Rev Esp Cienc Quim Biol. 2020;23