medigraphic.com
SPANISH

TIP Revista Especializada en Ciencias Químico-Biológicas

ISSN 2395-8723 (Electronic)
ISSN 1405-888X (Print)
TIP Revista Especializada en Ciencias Químico-Biológicas
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2020, Number 1

<< Back Next >>

TIP Rev Esp Cienc Quim Biol 2020; 23 (1)

Milpas as a model for studying microbiodiversity and plant-microbe interactions

Gastélum G, Rocha J
Full text How to cite this article

Language: Spanish
References: 86
Page: 1-13
PDF size: 433.82 Kb.


Key words:

milpa agroecosystem, agricultural microbiology, bacterial communities.

ABSTRACT

Research on agricultural microbiology aims at replacing agrochemicals with microorganisms or their natural products as biological control agents, since the use of technologies from the green revolution have had negative effects on the environment, on farmers and their families, the consumer, and on crop health. However, our current understanding about the beneficial microbe-plant interactions that mediate plant health in complex, natural settings is insufficient to achieve the success of these biological products. Milpas are traditional agroecosystems where several maize landraces are produced, together with other associated species. Technologies from the green revolution such as agrochemicals are largely absent in milpas, and therefore they represent a source of traditional knowledge on sustainable practices for agriculture. Recent studies show that modernization, as well as plant domestication cause disturbances in microbial communities from agroecosystems. Furthermore, unique beneficial bacteria-plant interactions occur in milpas, which may have been lost in modern agroecosystems. In this review, we discuss classic and modern research strategies from agricultural microbiology that can be applied in the study of milpas. Adopting milpas as a model habitat for microbe-plant interactions could result in the generation of knowledge that leads to decrease the use of agrochemicals in modern agroecosystems, as well as avoiding their growing use in milpas.


REFERENCES

  1. Agaisse, H. & Lereclus, D. (1995). How does Bacillus thuringiensis produce so much insecticidal crystal protein? Journal of Bacteriology, 177(21), 6027–6032. https://doi. org/10.1128/jb.177.21.6027-6032.1995

  2. Aguirre-Von-Wobeser, E., Rocha-Estrada, J., Shapiro, L. R. & De La Torre, M. (2018). Enrichment of Verrucomicrobia, Actinobacteria and Burkholderiales drives selection of bacterial community from soil by maize roots in a traditional milpa agroecosystem. PLoS ONE, 13(12), e0208852. https:// doi.org/10.1371/journal.pone.0208852

  3. Awasthi, A., Singh, M., Soni, S. K., Singh, R. & Kalra, A. (2014). Biodiversity acts as insurance of productivity of bacterial communities under abiotic perturbations. ISME Journal, 8(12), 2445–2452. https://doi.org/10.1038/ismej.2014.91

  4. Banerjee, S., Walder, F., Büchi, L., Meyer, M., Held, A. Y., Gattinger, A., Keller, T., Charles, R. & Heijden van der, M. G. A. (2019). Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. ISME Journal, 13(7), 1722–1736. https://doi. org/10.1038/s41396-019-0383-2

  5. Bargaz, A., Lyamlouli, K., Chtouki, M., Zeroual, Y. & Dhiba, D. (2018). Soil microbial resources for improving fertilizers efficiency in an integrated plant nutrient management system. Frontiers in Microbiology, 9, 1606. https://doi. org/https://doi.org/10.3389/fmicb.2018.01606

  6. Bell, T., Newman, J. A., Silverman, B. W., Turner, S. L. & Lilley, A. K. (2005). The contribution of species richness and composition to bacterial services. Nature, 436(7054), 1157–1160. https://doi.org/https://doi.org/10.1038/ nature03891

  7. Benítez, T., Rincón, A. M., Limón, M. C. & Codon, A. C. (2004). Biocontrol mechanisms of Trichoderma strains. International Microbiology, 7(4), 249–260.

  8. Berendsen, R. L., Pieterse, C. M. J. & Bakker, P. A. H. M. (2012). The rhizosphere microbiome and plant health. Trends in Plant Science, 17(8), 478–486. https://doi.org/https://doi. org/10.1016/j.tplants.2012.04.001

  9. Bhattacharyya, P. N. & Jha, D. K. (2012). Plant growthpromoting rhizobacteria (PGPR): emergence in agriculture. World Journal of Microbiology and Biotechnology, 28(4), 1327–1350. https://doi.org/https://doi.org/10.1007/s11274- 011-0979-9

  10. Bulgarelli, D., Rott, M., Schlaeppi, K., van Themaat, E. V. L., Ahmadinejad, N., Assenza, F., Rauf, P., Huettel, B., Reinhardt, R. & Schmelzer, E. (2012). Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature, 488(7409), 91–95. https://doi.org/ https://doi.org/10.1038/nature11336

  11. Bulgarelli, D., Schlaeppi, K., Spaepen, S., Van Themaat, E. V. L. & Schulze-Lefert, P. (2013). Structure and functions of the bacterial microbiota of plants. Annual Review of Plant Biology, 64(1), 807–838. https://doi.org/https://doi. org/10.1146/annurev-arplant-050312-120106

  12. Castrillo, G., Teixeira, P. J. P. L., Paredes, S. H., Law, T. F., de Lorenzo, L., Feltcher, M. E., Finkel, O. M., Breakfield, N. W., Mieczkowski, P. & Jones, C. D. (2017). Root microbiota drive direct integration of phosphate stress and immunity. Nature, 543(7646), 513–518. https://doi. org/https://doi.org/10.1038/nature21417

  13. Chen, Y. H., Shapiro, L. R., Benrey, B. & Cibrián-Jaramillo, A. (2017). Back to the origin: in situ studies are needed to understand selection during crop diversification. Frontiers in Ecology and Evolution, 5, 125. https://doi.org/https:// doi.org/10.3389/fevo.2017.00125

  14. Clayton, G. W., Rice, W. A., Lupwayi, N. Z., Johnston, A. M., Lafond, G. P., Grant, C. A. & Walley, F. (2004). Inoculant formulation and fertilizer nitrogen effects on field pea: Crop yield and seed quality. Canadian Journal of Plant Science, 84(1), 89–96. https://doi.org/https://doi. org/10.4141/P02-090

  15. CONABIO. (2020). La milpa. Recuperado el 3 de septiembre del 2020, de https://www.biodiversidad.gob.mx/diversidad/ sistemas-productivos/milpa

  16. Depoorter, E., Bull, M. J., Peeters, C., Coenye, T., Vandamme, P. & Mahenthiralingam, E. (2016). Burkholderia: an update on taxonomy and biotechnological potential as antibiotic producers. Applied Microbiology and Biotechnology, 100(12), 5215–5229. https://doi.org/https:// doi.org/10.1007/s00253-016-7520-x

  17. Dowling, D. N. & O’Gara, F. (1994). Metabolites of Pseudomonas involved in the biocontrol of plant disease. Trends in Biotechnology, 12(4), 133–141. https://doi.org/ https://doi.org/10.1016/0167-7799(94)90091-4

  18. Ebel, R., Pozas Cárdenas, J. G., Soria Miranda, F. & Cruz González, J. (2017). Manejo orgánico de la milpa: rendimiento de maíz, frijol y calabaza en monocultivo y policultivo. Terra Latinoamericana, 35(2), 149–160.

  19. Fierer, N. (2017). Embracing the unknown: disentangling the complexities of the soil microbiome. Nature Reviews Microbiology, 15(10), 579–590. https://doi.org/https://doi. org/10.1038/nrmicro.2017.87

  20. Franche, C., Lindström, K. & Elmerich, C. (2009). Nitrogenfixing bacteria associated with leguminous and nonleguminous plants. Plant and Soil, 321(1–2), 35–59. https:// doi.org/https://doi.org/10.1007/s11104-008-9833-8

  21. Ghosh, A., Mehta, A. & Khan, A. M. (2019). Metagenomic analysis and its applications. In Encyclopedia of bioinformatics and computational biology (pp. 184–193). Oxford: Academic Press.

  22. Hartmann, M., Frey, B., Mayer, J., Mäder, P. & Widmer, F. (2015). Distinct soil microbial diversity under long-term organic and conventional farming. ISME Journal, 9(5), 1177–1197. https://doi.org/10.1038/ismej.2014.210

  23. Hathaway, M. D. (2016). Agroecology and permaculture: addressing key ecological problems by rethinking and redesigning agricultural systems. Journal of Environmental Studies and Sciences, 6(2), 239–250. https://doi.org/https:// doi.org/10.1007/s13412-015-0254-8

  24. Herrmann, L. & Lesueur, D. (2013). Challenges of formulation and quality of biofertilizers for successful inoculation. Applied Microbiology and Biotechnology, 97(20), 8859–8873. https:// doi.org/https://doi.org/10.1007/s00253-013-5228-8

  25. Hirsch, P. R. & Mauchline, T. H. (2015). The importance of the microbial N cycle in soil for crop plant nutrition. Advances in Applied Microbiology, 93, 45–71. https://doi.org/https:// doi.org/10.1016/bs.aambs.2015.09.001

  26. Howell, C. R. (2003). Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Disease, 87(1), 4–10. https://doi.org/https://doi.org/10.1094/ PDIS.2003.87.1.4

  27. Janda, J. M. & Abbott, S. L. (2007). 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. Journal of Clinical Microbiology, 45(9), 2761–2764. https://doi.org/http://doi.org/10.1128/ JCM.01228-07

  28. Jerónimo, A. S. (2009). Análisis de la agricultura de temporal en México y su relación con las cuestiones climáticas: el caso maíz y frijol. Universidad Autónoma Agraria Antonio Narro. Recuperado de http://repositorio.uaaan. mx:8080/xmlui/bitstream/handle/123456789/5234/ T17603 SANTIAGO JERONIMO%2C ABEL TESIS. pdf?sequence=1yisAllowed=y

  29. Kaminsky, L. M., Trexler, R. V, Malik, R. J., Hockett, K. L. & Bell, T. H. (2019). The inherent conflicts in developing soil microbial inoculants. Trends in Biotechnology, 37(2), 140–151. https://doi.org/https://doi.org/10.1016/j. tibtech.2018.11.011

  30. Khush, G. S. (2001). Green revolution: the way forward. Nature Reviews Genetics, 2(10), 815–822. https://doi.org/https:// doi.org/10.1038/35093585

  31. Kolter, R. & Chimileski, S. (2018). The end of microbiology. Environmental Microbiology, 20(6), 1955–1959. https:// doi.org/10.1111/1462-2920.14240

  32. Kremmydas, G. F., Tampakaki, A. P. & Georgakopoulos, D. G. (2013). Characterization of the biocontrol activity of Pseudomonas fluorescens strain X reveals novel genes regulated by glucose. PLoS One, 8(4), e61808. https://doi. org/https://doi.org/10.1371/journal.pone.0061808

  33. Levy, S. E. & Myers, R. M. (2016). Advancements in nextgeneration sequencing. Annual Review of Genomics and Human Genetics, 17(1), 95–115. https://doi.org/https://doi. org/10.1146/annurev-genom-083115-022413

  34. Liu, A., Contador, C. A., Fan, K. & Lam, H.-M. (2018). Interaction and regulation of carbon, nitrogen, and phosphorus metabolisms in root nodules of legumes. Frontiers in Plant Science, 9, 1860. https://doi.org/https:// doi.org/10.3389/fpls.2018.01860

  35. Lozada-Aranda, M., Yanes, A. M., Ponce-Mendoza, A., Burgeff, C., Orjuela-R., M. A. & Galindo., O. O. (2018). Milpas de México. Oikos, 9, 10–12.

  36. Lundberg, D. S., Lebeis, S. L., Paredes, S. H., Yourstone, S., Gehring, J., Malfatti, S., Tremblay, J., Engelbrektson, A., Kunin, V. & Del Rio, T. G. (2012). Defining the core Arabidopsis thaliana root microbiome. Nature, 488(7409), 86–90. https://doi.org/https://doi.org/10.1038/ nature11237 Lupatini, M., Korthals, G. W., de Hollander, M., Janssens, T. K. S. & Kuramae, E. E. (2017). Soil microbiome is more heterogeneous in organic than in conventional farming system. Frontiers in Microbiology, 7, 2064. https://doi. org/https://doi.org/10.3389/fmicb.2016.02064

  37. Maiden, M. C. J. (2006). Multilocus sequence typing of bacteria. Annual Review of Microbiology., 60(1), 561–588. https://doi.org/https://doi.org/10.1146/annurev. micro.59.030804.121325

  38. Martínez-Romero, E., Noyola, J. L. A., Taype, N. T., Martínez- Romero, J. & Dávila, D. Z. (2020). Plant microbiota modified by plant domestication. Systematic and Applied Microbiology, 43(5), 126106. https://doi.org/https://doi. org/10.1016/j.syapm.2020.126106

  39. Matson, P. A., Parton, W. J., Power, A. G. & Swift, M. J. (1997). Agricultural intensification and ecosystem properties. Science, 277(5325), 504–509. https://doi.org/10.1126/ science.277.5325.504

  40. Mauro, A., Garcia-Cela, E., Pietri, A., Cotty, P. J. & Battilani, P. (2018). Biological control products for aflatoxin prevention in Italy: commercial field evaluation of atoxigenic Aspergillus flavus active ingredients. Toxins, 10(1), 30. https://doi.org/https://doi.org/10.3390/toxins10010030

  41. McCully, L. M., Bitzer, A. S., Seaton, S. C., Smith, L. M. & Silby, M. W. (2019). Interspecies Social Spreading: Interaction between Two Sessile Soil Bacteria Leads to Emergence of Surface Motility. MSphere, 4(1), e00696-18. https://doi. org/10.1128/msphere.00696-18

  42. Méndez-García, C., Bargiela, R., Martínez-Martínez, M. & Ferrer, M. (2018). Metagenomic protocols and strategies. In Metagenomics (pp. 15–54). Elsevier. https://doi.org/https:// doi.org/10.1016/B978-0-08-102268-9.00002-1

  43. Milner, R. J. (1994). History of Bacillus thuringiensis. Agriculture, Ecosystems & Environment, 49(1), 9–13. https:// doi.org/https://doi.org/10.1016/0167-8809(94)90014-0

  44. Mitter, B., Brader, G., Pfaffenbichler, N. & Sessitsch, A. (2019). Next generation microbiome applications for crop production—limitations and the need of knowledge-based solutions. Current Opinion in Microbiology, 49, 59–65. https://doi.org/https://doi.org/10.1016/j.mib.2019.10.006

  45. Morgera, E., Tsioumani, E. & Buck, M. (2015). Unraveling the Nagoya Protocol. Brill. Recuperado de http://www.jstor. org/stable/10.1163/j.ctt1w76vvq

  46. Mus, F., Crook, M. B., Garcia, K., Costas, A. G., Geddes, B. A., Kouri, E. D., Paramasivan, P., Ryu, M., Oldroyd, G. E. D. & Poole, P. S. (2016). Symbiotic nitrogen fixation and the challenges to its extension to nonlegumes. Applied and Environmental Microbiology, 82(13), 3698–3710. https:// doi.org/https://doi.org/10.1128/AEM.01055-16

  47. Niu, B., Paulson, J. N., Zheng, X. & Kolter, R. (2017). Simplified and representative bacterial community of maize roots. Proceedings of the National Academy of Sciences, 114(12), E2450–E2459. https://doi.org/10.1073/pnas.1616148114

  48. Peiffer, J. A., Spor, A., Koren, O., Jin, Z., Tringe, S. G., Dangl, J. L., Buckler, E. S. & Ley, R. E. (2013). Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proceedings of the National Academy of Sciences, 110(16), 6548–6553. https://doi.org/https://doi. org/10.1073/pnas.1302837110

  49. Pérez-Jaramillo, J. E., Carrión, V. J., Bosse, M., Ferrão, L. F. V, de Hollander, M., Garcia, A. A. F., Ramírez, C. A., Mendes, R. & Raaijmakers, J. M. (2017). Linking rhizosphere microbiome composition of wild and domesticated Phaseolus vulgaris to genotypic and root phenotypic traits. The ISME Journal, 11(10), 2244–2257. https://doi.org/ https://doi.org/10.1038/ismej.2017.85

  50. Pérez-Jaramillo, J. E., Mendes, R. & Raaijmakers, J. M. (2016). Impact of plant domestication on rhizosphere microbiome assembly and functions. Plant Molecular Biology, 90(6), 635–644. https://doi.org/https://doi.org/10.1007/s11103- 015-0337-7

  51. Pershina, E. V, Ivanova, E. A., Korvigo, I. O., Chirak, E. L., Sergaliev, N. H., Abakumov, E. V, Provorov, N. A. & Andronov, E. E. (2018). Investigation of the core microbiome in main soil types from the East European plain. Science of the Total Environment, Vols. 631–632, 1421–1430. https:// doi.org/https://doi.org/10.1016/j.scitotenv.2018.03.136

  52. Pishchany, G., Mevers, E., Ndousse-Fetter, S., Horvath, D. J., Paludo, C. R., Silva-Junior, E. A., Koren, S., Skaar, E. P., Clardy, J. & Kolter, R. (2018). Amycomicin is a potent and specific antibiotic discovered with a targeted interaction screen. Proceedings of the National Academy of Sciences, 115(40), 10124–10129. https://doi.org/https:// doi.org/10.1073/pnas.1807613115

  53. Qiu, Z., Egidi, E., Liu, H., Kaur, S. & Singh, B. K. (2019). New frontiers in agriculture productivity: Optimised microbial inoculants and in situ microbiome engineering. Biotechnology Advances, 37(6), 107371. https://doi.org/ https://doi.org/10.1016/j.biotechadv.2019.03.010

  54. Quince, C., Walker, A. W., Simpson, J. T., Loman, N. J. & Segata, N. (2017). Shotgun metagenomics, from sampling to analysis. Nature Biotechnology, 35(9), 833–844. https:// doi.org/https://doi.org/10.1038/nbt.3935

  55. Rebollar, E. A., Sandoval-Castellanos, E., Roessler, K., Gaut, B. S., Alcaraz, L. D., Benítez, M. & Escalante, A. E. (2017). Seasonal changes in a maize-based polyculture of central Mexico reshape the co-occurrence networks of soil bacterial communities. Frontiers in Microbiology, 8, 2478. https:// doi.org/10.3389/fmicb.2017.02478

  56. Rodríguez, A. & Arias, L. M. (2014). La milpa y el maizal: retos al desarrollo rural en México y Perú. Etnobiología, 12(3), 76–89.

  57. Salcedo, S., De La O, A. & Guzmán, S. (2014). El concepto de agricultura familiar en América Latina y el caribe. Agricultura Familiar En América Latina y El Caribe: Recomendaciones de Política, 17–34.

  58. Sanchis, V. (2011). From microbial sprays to insect-resistant transgenic plants: history of the biospesticide Bacillus thuringiensis. A review. Agronomy for Sustainable Development, 31(1), 217–231. https://doi.org/10.1051/ agro/2010027

  59. Santhanam, R., Weinhold, A., Goldberg, J., Oh, Y. & Baldwin, I. T. (2015). Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping. Proceedings of the National Academy of Sciences, 112(36), E5013–E5020. https://doi.org/https:// doi.org/10.1073/pnas.1505765112

  60. Santillán, M. L. (2014). La milpa, tradición milenaria de agricultura familiar. Recuperado el 3 de septiembre del 2020, de http://ciencia.unam.mx/leer/356/La_milpa_tradicion

  61. Schmidt, R., Gravuer, K., Bossange, A. V, Mitchell, J. & Scow, K. (2018). Long-term use of cover crops and no-till shift soil microbial community life strategies in agricultural soil. PLoS One, 13(2), e0192953. https://doi.org/https:// doi.org/10.1371/journal.pone.0192953

  62. Sergaki, C., Lagunas, B., Lidbury, I., Gifford, M. L. & Schäfer, P. (2018). Challenges and approaches in microbiome research: from fundamental to applied. Frontiers in Plant Science, 9, 1205. https://doi.org/https://doi.org/10.3389/ fpls.2018.01205

  63. Shade, A. & Handelsman, J. (2012). Beyond the Venn diagram: the hunt for a core microbiome. Environmental Microbiology, 14(1), 4–12. https://doi.org/https://doi. org/10.1111/j.1462-2920.2011.02585.x

  64. Shapiro, L. R., Paulson, J. N., Arnold, B. J., Scully, E. D., Zhaxybayeva, O., Pierce, N. E., Rocha, J., Klepac-Ceraj, V., Holton, K. & Kolter, R. (2018). An introduced crop plant is driving diversification of the virulent bacterial pathogen Erwinia tracheiphila. MBio, 9(5), e01307-18. https://doi. org/10.1128/mBio.01307-18

  65. Sinclair, T. R. & Nogueira, M. A. (2018). Selection of host-plant genotype: the next step to increase grain legume N2 fixation activity. Journal of Experimental Botany, 69(15), 3523–3530. https://doi.org/https://doi.org/10.1093/jxb/ery115

  66. Sivasakthi, S., Usharani, G. & Saranraj, P. (2014). Biocontrol potentiality of plant growth promoting bacteria (PGPR)- Pseudomonas fluorescens and Bacillus subtilis: A review. African Journal of Agricultural Research, 9(16), 1265–1277. https://doi.org/https://doi.org/10.5897/AJAR2013.7914

  67. Souza, V., Bain, J., Silva, C., Bouchet, V., Valera, A., Marquez, E. & Eguiarte, L. E. (1997). Ethnomicrobiology: do agricultural practices modify the population structure of the nitrogen fixing bacteria Rhizobium etli biovar phaseoli. Journal of Ethnobiology, 17, 249–266.

  68. Stukenbrock, E. H. & McDonald, B. A. (2008). The Origins of Plant Pathogens in Agro-Ecosystems. Annual Review of Phytopathology, 46(1), 75–100. https://doi.org/10.1146/ annurev.phyto.010708.154114

  69. Szoboszlay, M., Lambers, J., Chappell, J., Kupper, J. V, Moe, L. A. & McNear Jr, D. H. (2015). Comparison of root system architecture and rhizosphere microbial communities of Balsas teosinte and domesticated corn cultivars. Soil Biology and Biochemistry, 80, 34–44. https://doi.org/https://doi. org/10.1016/j.soilbio.2014.09.001

  70. Thomas, F., Hehemann, J.-H., Rebuffet, E., Czjzek, M. & Michel, G. (2011). Environmental and gut bacteroidetes: the food connection. Frontiers in Microbiology, 2, 93. https://doi. org/https://doi.org/10.3389/fmicb.2011.00093

  71. Thompson, L. R., Sanders, J. G., McDonald, D., Amir, A., Ladau, J., Locey, K. J., Prill, R. J., Tripathi, A. G., Sean M. & Ackermann, G. (2017). A communal catalogue reveals Earth’s multiscale microbial diversity. Nature, 551(7681), 457–463. https://doi.org/https://doi. org/10.1038/nature24621

  72. Tikhonovich, I. A. & Provorov, N. A. (2011). Microbiology is the basis of sustainable agriculture: an opinion. Annals of Applied Biology, 159(2), 155–168. https://doi.org/https:// doi.org/10.1111/j.1744-7348.2011.00489.x

  73. Tilman, D., Balzer, C., Hill, J. & Befort, B. L. (2011). Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences, 108(50), 20260–20264. https://doi.org/https://doi.org/10.1073/ pnas.1116437108

  74. Timmusk, S., Behers, L., Muthoni, J., Muraya, A. & Aronsson, A.-C. (2017). Perspectives and challenges of microbial application for crop improvement. Frontiers in Plant Science, 8, 49. https://doi.org/https://doi.org/10.3389/ fpls.2017.00049

  75. Tkacz, A., Pini, F., Turner, T. R., Bestion, E., Simmonds, J., Howell, P., Greenland, A.C., Jitender E., David M. & Uauy, C. (2020). Agricultural selection of wheat has been shaped by plant-microbe interactions. Frontiers in Microbiology, 11, 132. https://doi.org/https://doi. org/10.3389/fmicb.2020.00132

  76. Torsvik, V., Sørheim, R. & Goksøyr, J. (1996). Total bacterial diversity in soil and sediment communities - A review. Journal of Industrial Microbiology and Biotechnology, 17, 170–178. https://doi.org/https://doi.org/10.1007/ BF01574690

  77. Torsvik, V., Goksøyr, J. & Daae, F. L. (1990). High diversity in DNA of soil bacteria. Applied and Environmental Microbiology, 56(3), 782–787. https://doi.org/https://doi. org/0099-2240/90/030782-06$02.00/0

  78. Van Deynze, A., Zamora, P., Delaux, P. M., Heitmann, C., Jayaraman, D., Rajasekar, S., Graham, D., Maeda, J., Gibson, D., Schwartz, K. D., Berry, A. M., Bhatnagar, S., Jospin, G., Darling, A., Jeannotte, R., Lopez, J., Weimer, B. C., Eisen, J. A., Shapiro, H. Y., Ané, J. M. & Bennett, A. B. (2018). Nitrogen fixation in a landrace of maize is supported by a mucilage-associated diazotrophic microbiota. PLoS Biology, 16(8), e2006352. https://doi.org/10.1371/journal. pbio.2006352

  79. van Veen, J. A., van Overbeek, L. S. & van Elsas, J. D. (1997). Fate and activity of microorganisms introduced into soil. Microbiology and Molecular Biology Reviews, 61(2), 121– 135. https://doi.org/https://doi.org/1092-2172/97/$04.0010

  80. Vorholt, J. A., Vogel, C., Carlström, C. I. & Müller, D. B. (2017). Establishing causality: opportunities of synthetic communities for plant microbiome research. Cell Host & Microbe, 22(2), 142–155. https://doi.org/https://doi. org/10.1016/j.chom.2017.07.004

  81. Wang, F., Han, W., Chen, S., Dong, W., Qiao, M., Hu, C. & Liu, B. (2020). Fifteen-Year Application of Manure and Chemical Fertilizers Differently Impacts Soil ARGs and Microbial Community Structure. Frontiers in Microbiology, 11, 62. https://doi.org/https://doi.org/10.3389/fmicb.2020.00062

  82. Wilson, E. O. (1994). Naturalist. Washington, DC: Island Press.

  83. Woese, C. R. (1987). Bacterial evolution. Microbiological Reviews, 51(2), 221–271.

  84. Woodruff, H. B. (1980). Natural products from microorganisms. Science, 208(4449), 1225–1229. https://doi.org/10.1126/ science.7375932

  85. Yannarell, S. M., Grandchamp, G. M., Chen, S.-Y., Daniels, K. E. & Shank, E. A. (2019). A Dual-Species Biofilm with Emergent Mechanical and Protective Properties. Journal of Bacteriology, 201(18), e00670-18. https://doi.org/10.1128/ jb.00670-18

  86. Zhalnina, K., Zengler, K., Newman, D. & Northen, T. R. (2018). Need for laboratory ecosystems to unravel the structures and functions of soil microbial communities mediated by chemistry. MBio, 9(4), e01175-18. https://doi.org/10.1128/ mBio.01175-18




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

TIP Rev Esp Cienc Quim Biol. 2020;23