medigraphic.com
SPANISH

TIP Revista Especializada en Ciencias Químico-Biológicas

ISSN 2395-8723 (Electronic)
ISSN 1405-888X (Print)
TIP Revista Especializada en Ciencias Químico-Biológicas
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2020, Number 1

<< Back Next >>

TIP Rev Esp Cienc Quim Biol 2020; 23 (1)

Cold-adapted yeasts: the biotechnological treasure of Antarctica

González J, Romero-Aguilar L, Matus-Ortega G, Pardo JP, Flores-Alanis A, Segal-Kischinevzky C
Full text How to cite this article

Language: Spanish
References: 124
Page: 1-14
PDF size: 715.09 Kb.


Key words:

antarctic yeasts, Rhodotorula, carotenoid and lipid biosynthesis, ROS.

ABSTRACT

Yeasts are microscopic organisms that are distributed in the biomes of the whole Earth, so some yeasts species exhibit diverse metabolic adaptations that allow them to proliferate in extreme environments. Yeasts that inhabit the Antarctica represent a relatively unexplored group of cold-adapted fungi. This review describes some of the metabolic adaptations that allow yeasts to inhabit extreme environments such as those in the Antarctica. This review also addresses the relevant considerations to know whether a yeast is extremophilic, as well as the criteria used to classify by its growth and temperature. The role of carotenoid and lipid biosynthesis pathways to mitigate reactive oxygen species generated by oxidative stress in pigmented and oleaginous yeasts including the Rhodotorula genus is described. Further, this review also considers the importance of basic research in oleaginous yeast from Antarctica and the development of biotechnological applications.


REFERENCES

  1. Ageitos, J., Vallejo, J., Veiga-Crespo, P. & Villa, T. (2011). Oily yeasts as oleaginous cell factories. Applied Microbiology and Biotechnology, 90(4), 1219-1227. DOI: 10.1007/ s00253-011-3200-z

  2. Aksu, Z. & Eren, A. (2005). Carotenoids production by the yeast Rhodotorula mucilaginosa: Use of agricultural wastes as a carbon source. Process Biochemistry, 40(9), 2985-2991. DOI: 10.1016/j.procbio.2005.01.011

  3. Alcaíno, J., Cifuentes, V. & Baeza, M. (2015). Physiological adaptations of yeasts living in cold environments and their potential applications. World Journal of Microbiology and Biotechnology, 31(10), 1467-1473. DOI: 10.1007/ s11274-015-1900-8

  4. Amaretti, A., Raimondi, S., Sala, M., Roncaglia, L., De Lucia, M., Leonardi, A. & Rossi, M. (2010). Single cell oils of the cold-adapted oleaginous yeast Rhodotorula glacialis DBVPG 4785. Microbial Cell Factories, 9(1). DOI: 10.1186/1475-2859-9-73

  5. Angerbauer, C., Siebenhofer, M., Mittelbach, M. & Guebitz, G. (2008). Conversion of sewage sludge into lipids by Lipomyces starkeyi for biodiesel production. Bioresource Technology, 99(8), 3051-3056. DOI: 10.1016/j.biortech.2007.06.045

  6. Arous, F., Triantaphyllidou, I., Mechichi, T., Azabou, S., Nasri, M. & Aggelis, G. (2015). Lipid accumulation in the new oleaginous yeast Debaryomyces etchellsii correlates with ascosporogenesis. Biomass and Bioenergy, 80, 307- 315. DOI: 10.1016/j.biombioe.2015.06.019

  7. Arthur, H. & Watson, K. (1976). Thermal adaptation in yeast: growth temperatures, membrane lipid, and cytochrome composition of psychrophilic, mesophilic, and thermophilic yeasts. Journal of Bacteriology, 128(1), 56- 68. Retrieved from https://jb.asm.org/content/128/1/56

  8. Athenstaedt, K., Jolivet, P., Boulard, C., Zivy, M., Negroni, L., Nicaud, J. & Chardot, T. (2006). Lipid particle composition of the yeast Yarrowia lipolytica depends on the carbon source. Proteomics, 6(5), 1450-1459. DOI: 10.1002/pmic.200500339

  9. Ausich, R. (1997). Commercial opportunities for carotenoid production by biotechnology. Pure and Applied Chemistry, 69(10), 2169-2174. DOI: 10.1351/pac199769102169

  10. Azócar, L., Ciudad, G., Heipieper, H. & Navia, R. (2010). Biotechnological processes for biodiesel production using alternative oils. Applied Microbiology and Biotechnology, 88(3), 621-636. DOI: 10.1007/s00253-010-2804-z

  11. Baeza, M., Barahona, S., Alcaíno, J. & Cifuentes, V. (2017). Amplicon-Metagenomic Analysis of Fungi from Antarctic Terrestrial Habitats. Frontiers in Microbiology, 8. DOI: 10.3389/fmicb.2017.02235

  12. Barahona, S., Yuivar, Y., Socias, G., Alcaíno, J., Cifuentes, V. & Baeza, M. (2016). Identification and characterization of yeasts isolated from sedimentary rocks of Union Glacier at the Antarctica. Extremophiles, 20(4), 479-491. DOI: 10.1007/s00792-016-0838-6

  13. Bej A. K., Aislabie J. & Atlas, R. M. (eds) (2010). “Microbiology of Antarctic terrestrial soils and rocks”, in Polar Microbiology: The Ecology, Biodiversity and Bioremediation Potential of Microorganisms in Extremely Cold Environments. (Boca Raton, FL: CRC Press), 1–29.

  14. Beopoulos, A., Nicaud, J. & Gaillardin, C. (2011). An overview of lipid metabolism in yeasts and its impact on biotechnological processes. Applied Microbiology and Biotechnology, 90(4), 1193-1206. DOI: 10.1007/s00253- 011-3212-8

  15. Bhosale, P. & Bernstein, P. (2004). β-Carotene production by Flavobacterium multivorum in the presence of inorganic salts and urea. Journal of Industrial Microbiology & Biotechnology, 31(12), 565-571. DOI: 10.1007/s10295- 004-0187-9

  16. Bhosale, P. & Bernstein, P. (2005). Microbial xanthophylls. Applied Microbiology and Biotechnology, 68(4), 445- 455. DOI: 10.1007/s00253-005-0032-8

  17. Bhosale, P. & Gadre, R.V. (2001). Production of β-carotene by a Rhodotorula glutinis mutant in sea water medium. Bioresource Technology, 76(1), 53-55. DOI: 10.1016/ S0960-8524(00)00075-4

  18. Bridge, P. & Spooner, B. (2012). Non-lichenized Antarctic fungi: transient visitors or members of a cryptic ecosystem? Fungal Ecology, 5(4), 381-394. DOI: 10.1016/j.funeco.2012.01.007

  19. Britton, G. (1995). Structure and properties of carotenoids in relation to function. The FASEB Journal, 9(15), 1551- 1558. DOI: 10.1096/fasebj.9.15.8529834

  20. Britton, G. (2008). Functions of Intact Carotenoids. Carotenoids, 189-212. DOI: 10.1007/978-3-7643-7499-0_10

  21. Buzzini, P. & Margesin, R. (2014). Cold-adapted Yeasts. Biodiversity, Adaptation Strategies and Biotechnological Significance: A lesson from the cold and a challenge for the XXI century. In Buzzini P, Margesin R (eds) Coldadapted yeasts. Springer, Berlin, Heidelberg, pp 3-22.

  22. Buzzini, P., Innocenti, M., Turchetti, B., Libkind, D., van Broock, M. & Mulinacci, N. (2007). Carotenoid profiles of yeasts belonging to the genera Rhodotorula, Rhodosporidium, Sporobolomyces, and Sporidiobolus. Canadian Journal of Microbiology, 53(8), 1024-1031. DOI: 10.1139/w07-068

  23. Buzzini, P., Turchetti, B. & Yurkov, A. (2018). Extremophilic yeasts: the toughest yeasts around? Yeast, 35(8), 487-497. DOI: 10.1002/yea.3314

  24. Cameron, R., Kink, J. & David, C. (1970). Microbiology, ecology and microclimatology of soil sites in dry valleys of southern Victoria Land, Antarctica. Antarctic Ecology, 702-716. Microbiology, ecology and microclimatology of soil sites in Dry Valleys of southern Victoria land, Antarctica.

  25. Carrasco, M., Rozas, J., Barahona, S., Alcaíno, J., Cifuentes, V. & Baeza, M. (2012). Diversity and extracellular enzymatic activities of yeasts isolated from King George Island, the sub-Antarctic region. BMC Microbiology, 12(1), 251. DOI: 10.1186/1471-2180-12-251

  26. Chang, Y., Chang, K., Lee, C., Hsu, C., Huang, C. & Jang, H. (2015). Microbial lipid production by oleaginous yeast Cryptococcus sp. in the batch cultures using corncob hydrolysate as carbon source. Biomass and Bioenergy, 72, 95-103. DOI: 10.1016/j.biombioe.2014.11.012

  27. Choi, S., Ryu, D. & Rhee, J. (1982). Production of microbial lipid: Effects of growth rate and oxygen on lipid synthesis and fatty acid composition of Rhodotorula gracilis. Biotechnology and Bioengineering, 24(5), 1165-1172. DOI: 10.1002/bit.260240513

  28. Claridge, G. G. & Campbell, I. B. (1977). The salts in Antarctic soils, their distribution and relationship to soil processes. Soil Science, 377-384. DOI: 10.1097/00010694-197706000 -00006

  29. Czabany, T., Athenstaedt, K. & Daum, G. (2007). Synthesis, storage and degradation of neutral lipids in yeast. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1771(3), 299-309. DOI: 10.1016/j. bbalip.2006.07.001

  30. Davoli, P., Mierau, V. & Weber, R. (2004). Carotenoids and Fatty Acids in Red Yeasts Sporobolomyces roseus and Rhodotorula glutinis. Applied Biochemistry and Microbiology, 40(4), 392-397. DOI: 10.1023/b:abim.0000033917.57177.f2

  31. Disch, A. & Rohmer, M. (1998). On the absence of the glyceraldehyde 3-phosphate/pyruvate pathway for isoprenoid biosynthesis in fungi and yeasts. FEMS Microbiology Letters, 168(2), 201-208. DOI: 10.1111/ j.1574-6968.1998.tb13274.x

  32. Duarte, S., de Andrade, C., Ghiselli, G. & Maugeri, F. (2013). Exploration of Brazilian biodiversity and selection of a new oleaginous yeast strain cultivated in raw glycerol. Bioresource Technology, 138, 377-381. DOI: 10.1016/j. biortech.2013.04.004

  33. Fakas, S. (2016). Lipid biosynthesis in yeasts: A comparison of the lipid biosynthetic pathway between the model nonoleaginous yeast Saccharomyces cerevisiae and the model oleaginous yeast Yarrowia lipolytica. Engineering in Life Sciences, 17(3), 292-302. DOI: 10.1002/ elsc.201600040

  34. Fell, J., Boekhout, T., Fonseca, A., Scorzetti, G. & Statzell- Tallman, A. (2000). Biodiversity and systematics of basidiomycetous yeasts as determined by large-subunit rDNA D1/D2 domain sequence analysis. International Journal of Systematic and Evolutionary Microbiology, 50(3), 1351-1371. DOI: 10.1099/00207713-50-3-1351

  35. Fell, J., Scorzetti, G., Connell, L. & Craig, S. (2006). Biodiversity of micro-eukaryotes in Antarctic Dry Valley soils with < 5% soil moisture. Soil Biology and Biochemistry, 38(10), 3107-3119. DOI: 10.1016/j. soilbio.2006.01.014

  36. Feller, G. & Gerday, C. (2003). Psychrophilic enzymes: hot topics in cold adaptation. Nature Reviews Microbiology, 1(3), 200-208. DOI: 10.1038/nrmicro773

  37. Finogenova, T., Morgunov, I., Kamzolova, S. & Chernyavskaya, O. (2005). Organic Acid Production by the Yeast Yarrowia lipolytica: A Review of Prospects. Applied Biochemistry and Microbiology, 41(5), 418-425. DOI: 10.1007/s10438-005-0076-7

  38. Frengova, G. & Beshkova, D. (2009). Carotenoids from Rhodotorula and Phaffia: yeasts of biotechnological importance. Journal of Industrial Microbiology & Biotechnology, 36(2), 163-180. DOI: 10.1007/s10295- 008-0492-9

  39. Frengova, G., Simova, E. & Beshkova, D. (1995). Effect of temperature changes on the production of yeast pigments co-cultivated with lacto-acid bacteria in whey ultrafiltrate. Biotechnology Letters, 17(9), 1001-1006. DOI: 10.1007/ bf00127443

  40. Friedmann, E. (1982). Endolithic Microorganisms in the Antarctic Cold Desert. Science, 215(4536), 1045-1053. DOI: 10.1126/science.215.4536.1045

  41. Garay, L., Sitepu, I., Cajka, T., Chandra, I., Shi, S., Lin, T., German, J. B., Fiehn O. & Boundy-Milss, K. L. (2016). Eighteen new oleaginous yeast species. Journal of Industrial Microbiology & Biotechnology, 43(7), 887- 900. DOI: 10.1007/s10295-016-1765-3

  42. Gill, C., Hall, M. & Ratledge, C. (1977). Lipid accumulation in an oleaginous yeast (Candida 107) growing on glucose in single-stage continuous culture. Applied and Environmental Microbiology, 33(2), 231-239. Retrieved from https://aem.asm.org/content/33/2/231.long

  43. Gonçalves, V., Vaz, A., Rosa, C. & Rosa, L. (2012). Diversity and distribution of fungal communities in lakes of Antarctica. FEMS Microbiology Ecology, 82(2), 459- 471. DOI: 10.1111/j.1574-6941.2012.01424.x

  44. Hagiwara, K., Okura, M., Sumikawa, Y., Hida, T., Kuno, A., Horio, Y. & Yamashita, T. (2016). Biochemical effects of the flavanol-rich lychee fruit extract on the melanin biosynthesis and reactive oxygen species. The Journal of Dermatology, 43(10), 1174-1183. DOI: 10.1111/1346- 8138.13326

  45. Hassan, N., Rafiq, M., Hayat, M., Shah, A. & Hasan, F. (2016). Psychrophilic and psychrotrophic fungi: a comprehensive review. Reviews in Environmental Science and Bio/ Technology, 15(2), 147-172. DOI: 10.1007/s11157-016- 9395-9

  46. Hayman, E., Yokoyama, H., Chichester, C. & Simpson, K. (1974). Carotenoid Biosynthesis in Rhodotorula glutinis. Journal of Bacteriology, 120(3), 1339-1343. Retrieved from https://jb.asm.org/content/120/3/1339.long

  47. Holdgate, M. W., Ernest, F. V. & Maitland, L.R. (1997). Life sciences - Terrestrial ecosystems in the Antarctic. Philosophical Transactions of the Royal Society of London. B, Biological Sciences. Retrieved from https:// doi.org/10.1098/rstb.1977.0068

  48. Husseiny, S., Abdelhafez, A., Ali, A. & Sand, H. (2017). Optimization of β-Carotene Production from Rhodotorula glutinis ATCC 4054 Growing on Agro-industrial Substrate Using Plackett–Burman Design. Proceedings of The National Academy of Sciences, India Section B: Biological Sciences, 88(4), 1637-1646. DOI: 10.1007/ s40011-017-0908-2

  49. Ivashov, V., Grillitsch, K., Koefeler, H., Leitner, E., Baeumlisberger, D., Karas, M. & Daum, G. (2013). Lipidome and proteome of lipid droplets from the methylotrophic yeast Pichia pastoris. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1831(2), 282-290. DOI: 10.1016/j. bbalip.2012.09.017

  50. Jamieson, D. (1998). Oxidative stress responses of the yeast Saccharomyces cerevisiae. Yeast, 14(16), 1511-1527. DOI: 10.1002/(sici)1097-0061(199812)14:16<1511::aidyea356> 3.0.co;2-s

  51. Johnson, E. (2012). Biotechnology of non-Saccharomyces yeasts—the ascomycetes. Applied Microbiology and Biotechnology, 97(2), 503-517. DOI: 10.1007/s00253- 012-4497-y

  52. Johnson, E. & Lewis, M. (1979). Astaxanthin Formation by the Yeast Phaffia rhodozyma. Journal of General Microbiology, 115(1), 173-183. DOI: 10.1099/00221287- 115-1-173

  53. Johnson, E. & Schroeder, W. (1995). Microbial carotenoids. In: Downstream Processing Biosurfactants Carotenoids. Advances in Biochemical Engineering/Biotechnology, 53, 119-178 Springer, Berlin, Heidelberg. https://doi. org/10.1007/BFb0102327

  54. Kaneko, H., Hosohara, M., Tanaka, M. & Itoh, T. (1976). Lipid composition of 30 species of yeast. Lipids, 11(12), 837-844. DOI: 10.1007/bf02532989

  55. Kot, A., Błażejak, S., Gientka, I., Kieliszek, M. & Bryś, J. (2018). Torulene and torularhodin: “new” fungal carotenoids for industry? Microbial Cell Factories, 17(1). DOI: 10.1186/s12934-018-0893-z

  56. Koutinas, A., Chatzifragkou, A., Kopsahelis, N., Papanikolaou, S. & Kookos, I. (2014). Design and techno-economic evaluation of microbial oil production as a renewable resource for biodiesel and oleochemical production. Fuel, 116, 566-577. DOI: 10.1016/j.fuel.2013.08.045

  57. Kurtzman, C., Fell, J., Boekhout, T. & Robert, V. (2011). Methods for Isolation, Phenotypic Characterization and Maintenance of Yeasts. Chapter 7. In: The Yeasts, 87-110. DOI: 10.1016/B978-0-444-52149-1.00007-0

  58. Lachance, M. (2006). Yeast Biodiversity: How Many and How Much? In: Péter, G. & Rosa, C. (eds) Biodiversity and Ecophysiology of Yeasts. The Yeast Handbook, 1-9. Springer, Berlin, Heidelberg. DOI: 10.1007/3-540- 30985-3_1

  59. Lampila, L., Wallen, S. & Bullerman, L. (1985). A review of factors affecting biosynthesis of carotenoids by the order Mucorales. Mycopathologia, 90(2), 65-80. DOI: 10.1007/ bf00436853

  60. Landolfo, S., Ianiri, G., Camiolo, S., Porceddu, A., Mulas, G. Chessa, R., Zara, G. & Manazzu, G. (2018). CAR gene cluster and transcript levels of carotenogenic genes in Rhodotorula mucilaginosa. Microbiology, 164(1), 78-87. DOI: 10.1099/mic.0.000588

  61. Li, Q., Du, W. & Liu, D. (2008). Perspectives of microbial oils for biodiesel production. Applied Microbiology and Biotechnology, 80(5), 749-756. DOI: 10.1007/s00253- 008-1625-9

  62. Liu, B. & Zhao, Z. (2007). Biodiesel production by direct methanolysis of oleaginous microbial biomass. Journal of Chemical Technology & Biotechnology, 82(8), 775- 780. DOI: 10.1002/jctb.1744

  63. Madhour, A., Anke, H., Mucci, A., Davoli, P. & Weber, R. (2005). Biosynthesis of the xanthophyll plectaniaxanthin as a stress response in the red yeast Dioszegia (Tremellales, Heterobasidiomycetes, Fungi). Phytochemistry, 66(22), 2617-2626. DOI: 10.1016/j.phytochem.2005.09.010

  64. Maheshwari, R., Bharadwaj, G. & Bhat, M. (2000). Thermophilic Fungi: Their Physiology and Enzymes. Microbiology and Molecular Biology Reviews, 64(3), 461-488. DOI: 10.1128/MMBR.64.3.461-488.2000

  65. Margalith, P. & Meydav S. (1968). Some observations on the carotenogenesis in the yeast Rhodotorula mucilaginosa. Phytochemistry, 7(5), 765-768. DOI: 10.1016/S0031- 9422(00)84829-3

  66. Margesin, R. & Miteva, V. (2011). Diversity and ecology of psychrophilic microorganisms. Research in Microbiology, 162(3), 346-361. DOI: 10.1016/j.resmic.2010.12.004

  67. Marova, I., Carnecka, M., Halienova, A., Certik, M., Dvorakova, T. & Haronikova, A. (2012). Use of several waste substrates for carotenoid-rich yeast biomass production. Journal of Environmental Management, 95, S338-S342. DOI: 10.1016/j.jenvman.2011.06.018

  68. Martelli, H. & M. da Silva, I. (1993). [35] β-carotene synthesis in Rhodotorula. Methods in Enzymology, 214, 386-390. DOI: 10.1016/0076-6879(93)14082-T

  69. Maza, D., Viñarta, S., Su, Y., Guillamón, J. & Aybar, M. (2020). Growth and lipid production of Rhodotorula glutinis R4, in comparison to other oleaginous yeasts. Journal of Biotechnology, 310, 21-31. DOI: 10.1016/j. jbiotec.2020.01.012

  70. Meng, X., Yang, J., Xu, X., Zhang, L., Nie, Q. & Xian, M. (2009). Biodiesel production from oleaginous microorganisms. Renewable Energy, 34(1), 1-5. DOI: 10.1016/j.renene.2008.04.014

  71. Merdinger, E. & Devine, E. (1965). Lipids of Debaryomyces hansenii. Journal of Bacteriology, 89(6), 1488-1493. Retrieved from https://jb.asm.org/content/89/6/1488. long

  72. Morano, K., Grant, C. & Moye-Rowley, W. (2012). The Response to Heat Shock and Oxidative Stress in Saccharomyces cerevisiae. Genetics, 190(4), 1157-1195. DOI: 10.1534/genetics.111.128033

  73. Morita, R. (1975). Psychrophilic bacteria. Bacteriological Reviews, 39(2), 144-167. Retrieved from https://www. ncbi.nlm.nih.gov/pmc/articles/PMC413900/

  74. Nakayama, T., Mackinney, G. & Phaff, H. (1954). Carotenoids in asporogenous yeasts. Antonie Van Leeuwenhoek, 20(1), 217-228. DOI: 10.1007/bf02543724

  75. Nam, H., Cho, S. & Rhee, J. (1988). High-performance liquid chromatographic analysis of major carotenoids from Rhodotorula glutinis. Journal of Chromatography A, 448, 445-447. DOI: 10.1016/S0021-9673(01)84610-0

  76. Nasrabadi, M. & Razavi, S. (2011). Optimization of β-carotene production by a mutant of the lactose-positive yeast Rhodotorula acheniorum from whey ultrafiltrate. Food Science and Biotechnology, 20(2), 445-454. DOI: 10.1007/s10068-011-0062-1

  77. Nielsen, J. (2009). Systems biology of lipid metabolism: From yeast to human. FEBS Letters, 583(24), 3905-3913. DOI: 10.1016/j.febslet.2009.10.054

  78. Pan, J. & Rhee, J. (1986). Biomass yields and energetic yields of oleaginous yeasts in batch culture. Biotechnology and Bioengineering, 28(1), 112-114. DOI: 10.1002/ bit.260280117

  79. Papanikolaou, S. & Aggelis, G. (2002). Lipid production by Yarrowia lipolytica growing on industrial glycerol in a single-stage continuous culture. Bioresource Technology, 82(1), 43-49. DOI: 10.1016/s0960-8524(01)00149-3

  80. Papanikolaou, S. & Aggelis, G. (2011). Lipids of oleaginous yeasts. Part I: Biochemistry of single cell oil production. European Journal of Lipid Science and Technology, 113(8), 1031-1051. DOI: 10.1002/ejlt.201100014

  81. Papanikolaou, S., Chevalot, I., Komaitis, M., Aggelis, G. & Marc, I. (2001). Kinetic profile of the cellular lipid composition in an oleaginous Yarrowia lipolytica capable of producing a cocoa-butter substitute from industrial fats. Antonie Van Leeuwenhoek, 80(3/4), 215-224. DOI: 10.1023/a:1013083211405

  82. Papanikolaou, S., Muniglia, L., Chevalot, I., Aggelis, G. & Marc, I. (2003). Accumulation of a Cocoa-Butter- Like Lipid by Yarrowia lipolytica Cultivated on Agro- Industrial Residues. Current Microbiology, 46(2), 124- 130. DOI: 10.1007/s00284-002-3833-3

  83. Perrier, V., Dubreucq, E. & Galzy, P. (1995). Fatty acid and carotenoid composition of Rhodotorula strains. Archives of Microbiology, 164(3), 173-179. DOI: 10.1007/ bf02529968

  84. Péter, G., Takashima, M. & Čadež, N. (2017). Yeast Habitats: Different but Global. In: Buzzini P., Lachance MA., Yurkov A. (eds) Yeasts in Natural Ecosystems: Ecology, 39-71. DOI: 10.1007/978-3-319-61575-2_2

  85. Peterson, W. J., Bell, T. A., Etchells, J. L. & Smart, W.W. Jr. (1954) A procedure for demonstrating the presence of carotenoid pigments in yeasts. Journal of Bacteriology, 67(6), 708-713. Retrieve from: https://www.ncbi.nlm.nih. gov/pmc/articles/PMC357309/pdf/jbacter00555-0108. pdf

  86. Peterson, W. J., Evans, W. R., Lecce, E., Bell, T. A. & Etchells, J. L. (1958). Quantitative determination of the carotenoids in yeasts of the genus Rhodotorula. Journal of Bacteriology, 75(5), 586. Retrieved from https:// www.ncbi.nlm.nih.gov/pmc/articles/PMC290114/pdf/ jbacter00512-0111.pdf

  87. Petrik, S., Marova, I., Haronikova, A., Kostovova, I. & Breierova, E. (2013). Production of biomass, carotenoid and other lipid metabolites by several red yeast strains cultivated on waste glycerol from biofuel production – a comparative screening study. Annals of Microbiology, 63(4), 1537-1551. DOI: 10.1007/s13213-013-0617-x

  88. Poli, J. S., Rosa, P. D., Senter, L., Mendes, S. D. C., Ramirez- Castrillon, M., Vainstein, M. H. & Valente, P. (2013). Fatty acid methyl esters produced by oleaginous yeast Yarrowia lipolytica QU21: an alternative for vegetable oils. Revista Brasileira de Biociências, 11, 203–208. Available at http://www.ufrgs.br/seerbio/ojs/index.php/ rbb/article/view/2524

  89. Pomraning, K., Kim, Y., Nicora, C., Chu, R., Bredeweg, E., Purvine, S., Hu, D., Metz, T.O. & Baker, S. E. (2016). Multi-omics analysis reveals regulators of the response to nitrogen limitation in Yarrowia lipolytica. BMC Genomics, 17(1). DOI: 10.1186/s12864-016-2471-2

  90. Raspor, P. & Zupan, J. (2006). Yeasts in Extreme Environments. In: Péter, G. & Rosa, C. (eds) Biodiversity and Ecophysiology of Yeasts. The Yeast Handbook, 371- 417. DOI: 10.1007/3-540-30985-3_15

  91. Ratledge, C. (2008). Microbial Lipids. In: Rehm, H.-J. & Reed, G. (eds). Biotechnology: Products of Secondary Metabolism, Volume 7, Second Edition, 133-197. DOI: 10.1002/9783527620890.ch4

  92. Reis-Mansur, M. C. P. P., Cardoso-Rurr, J. S., Abreu Silva, J. V. M., Rodrigues de Souza, G., da Silva Cardoso, V., Passos Mansoldo, F. R., Pinheiro, Y., Schultz, J., Lopez Balottin, L. B., Ribeiro da Silva, A. J., Lage, C., Pereira dos Santos, E., Soares Rosado, A. & Vermelho, A. B. (2019). Carotenoids from UV-resistant Antarctic Microbacterium sp. LEMMJ01. Scientific Reports, 9(9554), 1 - 14. DOI: 10.1038/s41598-019-45840-6

  93. Rilfors, L. & Lindblom, G. (2002). Regulation of lipid composition in biological membranes—biophysical studies of lipids and lipid synthesizing enzymes. Colloids and Surfaces B: Biointerfaces, 26(1-2), 112-124. DOI: 10.1016/s0927-7765(01)00310-1

  94. Romero-Aguilar, L., Pardo, J., Lomelí, M., Bocardo, O., Juárez Oropeza, M. & Guerra Sánchez, G. (2017). Lipid droplets accumulation and other biochemical changes induced in the fungal pathogen Ustilago maydis under nitrogen-starvation. Archives of Microbiology, 199(8), 1195-1209. DOI: 10.1007/s00203-017-1388-8

  95. Rossi, M., Buzzini, P., Cordisco, L., Amaretti, A., Sala, M., Raimondi, S., Ponzoni, C., Pagnoni U. M. & Matteuzzi, D. (2009). Growth, lipid accumulation, and fatty acid composition in obligate psychrophilic, facultative psychrophilic, and mesophilic yeasts. FEMS Microbiology Ecology, 69(3), 363-372. DOI: 10.1111/j.1574-6941.2009.00727.x

  96. Sakaki, H., Nakanishi, T., Komemushi, S., Namikawa, K. & Miki, W. (2001). Torularhodin as a Potent Scavenger against Peroxyl Radicals Isolated from a Soil Yeast, Rhodotorula glutinis. Journal of Clinical Biochemistry and Nutrition, 30, 1-10. DOI: 10.3164/jcbn.30.1

  97. Schroeder, W. & Johnson, E. (1995a). Carotenoids protect Phaffia rhodozyma against singlet oxygen damage. Journal of Industrial Microbiology, 14(6), 502-507. DOI: 10.1007/bf01573965

  98. Schroeder, W. & Johnson, E. (1995b). Singlet Oxygen and Peroxyl Radicals Regulate Carotenoid Biosynthesis in Phaffia rhodozyma. Journal of Biological Chemistry, 270(31), 18374-18379. DOI: 10.1074/jbc.270.31.18374

  99. Shi, K., Gao, Z., Shi, T., Song, P., Ren, L., Huang, H. & Ji, X. (2017). Reactive Oxygen Species-Mediated Cellular Stress Response and Lipid Accumulation in Oleaginous Microorganisms: The State of the Art and Future Perspectives. Frontiers in Microbiology, 8: 793. DOI: 10.3389/fmicb.2017.00793

  100. Shivaji, S. & Prasad, G. (2009). Antarctic Yeasts: Biodiversity and Potential Applications. In: Satyanarayana, T. & Kunzem G. (eds.) Yeast Biotechnology: Diversity and Applications, 3-18. DOI: 10.1007/978-1-4020-8292-4_1

  101. Simpson, K., Nakayama, T. & Chichester, C. (1964). Biosynthesis of yeast carotenoids. Journal of Bacteriology, 88(6), 1688-1694. Retrieved from https:// jb.asm.org/content/88/6/1688

  102. Sitepu, I., Garay, L., Sestric, R., Levin, D., Block, D., German, J. & Boundy-Mills, K. (2014). Oleaginous yeasts for biodiesel: Current and future trends in biology and production. Biotechnology Advances, 32(7), 1336-1360. DOI: 10.1016/j.biotechadv.2014.08.003

  103. Starmer, W. & Lachance, M. (2011). Yeast Ecology. Chapter 6. In: Kurtzman, C. P., Fell, J. W. & Boekhout, T. The Yeasts (Fifth Edition), 65-83. DOI: 10.1016/B978-0-444- 52149-1.00006-9

  104. Taccari, M., Canonico, L., Comitini, F., Mannazzu, I. & Ciani, M. (2012). Screening of yeasts for growth on crude glycerol and optimization of biomass production. Bioresource Technology, 110, 488-495. DOI: 10.1016/j. biortech.2012.01.109

  105. Tang, W., Wang, Y., Zhang, J., Cai, Y. & He, Z. (2019). Biosynthetic Pathway of Carotenoids in Rhodotorula and Strategies for Enhanced Their Production. Journal of Microbiology and Biotechnology, 29(4), 507-517. DOI: 10.4014/jmb.1801.01022

  106. Tang, X., Lee, J. & Chen, W. (2015). Engineering the fatty acid metabolic pathway in Saccharomyces cerevisiae for advanced biofuel production. Metabolic Engineering Communications, 2, 58-66. DOI: 10.1016/j. meteno.2015.06.005

  107. Taskin, M., Sisman, T., Erdal, S. & Kurbanoglu, E. (2011). Use of waste chicken feathers as peptone for production of carotenoids in submerged culture of Rhodotorula glutinis MT-5. European Food Research and Technology, 233(4), 657-665. DOI: 10.1007/s00217-011-1561-2

  108. Tehlivets, O., Scheuringer, K. & Kohlwein, S. (2007). Fatty acid synthesis and elongation in yeast. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1771(3), 255-270. DOI: 10.1016/j. bbalip.2006.07.004

  109. Tsuji, M. (2016). Cold-stress responses in the Antarctic basidiomycetous yeast Mrakia blollopis. Royal Society Open Science 3(7), 160116. DOI: 10.1098/rsos.160106

  110. Turchetti, B., Marconi, G., Sannino, C., Buzzini, P. & Albertini, E. (2020). DNA Methylation Changes Induced by Cold in Psychrophilic and Psychrotolerant Naganishia Yeast Species. Microorganisms, 8(2), 296. DOI: 10.3390/ microorganisms8020296

  111. Van Uden, N. (1985). Temperature Profiles of Yeasts. Advances in Microbial Physiology, Vol. 25, 195-251. DOI: 10.1016/s0065-2911(08)60293-3

  112. Villarreal, P., Carrasco, M., Barahona, S., Alcaíno, J., Cifuentes, V. & Baeza, M. (2016). Tolerance to Ultraviolet Radiation of Psychrotolerant Yeasts and Analysis of Their Carotenoid, Mycosporine, and Ergosterol Content. Current Microbiology, 72(1), 94-101. DOI: 10.1007/ s00284-015-0928-1

  113. Villarreal, P., Carrasco, M., Barahona, S., Alcaíno, J., Cifuentes, V. & Baeza, M. (2018). Antarctic yeasts: analysis of their freeze-thaw tolerance and production of antifreeze proteins, fatty acids and ergosterol. BMC Microbiology, 18, 66. DOI: 10.1186/s12866-018-1214-8

  114. Villoutreix, J. (1960). Les caroténoïdes de Rhodotorula mucilaginosa étude de leur biosynthèse a l’aide de l’analyse de mutants et de l’emploi d’un inhibiteur de la caroténogénèse. Biochimica et Biophysica Acta, 40, 442- 457. DOI: 10.1016/0006-3002(60)91385-8

  115. Viñarta, S., Angelicola, M., Barros, J., Fernández, P., Mac Cormak, W., Aybar, M. & de Figueroa, L. (2016). Oleaginous yeasts from Antarctica: Screening and preliminary approach on lipid accumulation. Journal of Basic Microbiology, 56(12), 1360-1368. DOI: 10.1002/ jobm.201600099

  116. Viñarta, S., Angelicola, M. V., Van Nieuwenhove, C., Aybar, M. & de Figueroa, L. (2020). Fatty Acids Profiles and Estimation of the Biodiesel Quality Parameters from Rhodotorula spp. From Antarctica. Biotechnology Letters, 42(5), 757-772. DOI: 10.1007/s10529-020-02796-2

  117. Wang, S. L., Liu, W., Wang, H. & Lv, C. (2012). Ultra High- Pressure and Ion Implantation Combined Mutagenesis to Improve the Production of β-Carotene from Red Yeast. Advanced Materials Research, 554-556, 1165-1169. DOI: 10.4028/www.scientific.net/amr.554-556.1165

  118. Wang, S. L., Sha, X. & Wang, H. X. (2016). Improving yield of beta carotene in red yeast by using fermentation promoter. Food and Nutrition in China. 2016 issue 5, 58-60. Retrieved from http://caod.oriprobe.com/ articles/48823400/Improving_Yield_of_Beta_ Carotene_in_Red_Yeast_by_Using_Fermentation_ Pr.htm

  119. Wang, S. L., Sun, J., Han, B. & Wu, X. (2007). Optimization of β-Carotene Production by Rhodotorula glutinis Using High Hydrostatic Pressure and Response Surface Methodology. Journal of Food Science, 72(8), M325-M329. DOI: 10.1111/j.1750-3841.2007.00495.x

  120. Wilhelm, S. & Helmut, S. (2012). β-Carotene and other carotenoids in protection from sunlight, The American Journal of Clinical Nutrition, 96(5), 1179S–1184S. DOI: 10.3945/ajcn.112.034819

  121. Wiebe, M., Koivuranta, K., Penttilä, M. & Ruohonen, L. (2012). Lipid production in batch and fed-batch cultures of Rhodosporidium toruloides from 5 and 6 carbon carbohydrates. BMC Biotechnology, 12, 26. DOI: 10.1186/1472-6750-12-26

  122. Wolf, K., Breunig, K. D. & Barth, G. (2003). Non-Conventional Yeasts in Genetics, Biochemistry and Biotechnology. Practical Protocols. SpringerLink.

  123. Xie, D. (2017). Integrating Cellular and Bioprocess Engineering in the Non-Conventional Yeast Yarrowia lipolytica for Biodiesel Production: A Review. Frontiers In Bioengineering and Biotechnology, 5, 65. DOI: 10.3389/fbioe.2017.00065

  124. Zhao, X., Kong, X., Hua, Y., Feng, B. & Zhao, Z. (2008). Medium optimization for lipid production through cofermentation of glucose and xylose by the oleaginous yeast Lipomyces starkeyi. European Journal of Lipid Science and Technology, 110(5), 405-412. DOI: 10.1002/ ejlt.200700224




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

TIP Rev Esp Cienc Quim Biol. 2020;23