medigraphic.com
ENGLISH

Latin American Journal of Oral and Maxillofacial Surgery

ISSN 2992-7757 (Digital)
Órgano de difusión de la Asociación Latinoamericana de Cirugía y Traumatología Bucomaxilofacial (ALACIBU)
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2025, Número 2

<< Anterior Siguiente >>

Lat Am J Oral Maxillofac Surg 2025; 5 (2)


Conocimientos actuales sobre la e.rh-BMP2 en cirugía oral y maxilofacial y en implantología. Una revisión exhaustiva de la literatura

García GH, Vivas RA, Viamonte MD, Gómez J
Texto completo Cómo citar este artículo 10.35366/121107

DOI

DOI: 10.35366/121107
URL: https://dx.doi.org/10.35366/121107
Artículos similares

Idioma: Ingles.
Referencias bibliográficas: 82
Paginas: 39-47
Archivo PDF: 303.34 Kb.


PALABRAS CLAVE

BMP, e.rh-BMP2, cirugía bucomaxilofacial, implantología, regeneración ósea, biomaterial.

RESUMEN

Esta revisión examina el conocimiento actual y las aplicaciones clínicas de la proteína morfogenética ósea humana recombinante (e.rh-BMP2) en cirugía bucomaxilofacial e implantología. Se sintetizan hallazgos recientes sobre sus propiedades osteoinductoras, que potencian la regeneración ósea en procedimientos como la ampliación del reborde alveolar, la elevación del seno maxilar, la regeneración periodontal y la reconstrucción mandibular/maxilar. Se evalúan diversos métodos de producción –desde sistemas en células de mamífero e insecto hasta Escherichia coli– destacando en especial el BMP-2 derivado de E. coli, reconocido por su rentabilidad y escalabilidad, pese a requerir replegamiento adicional para asegurar su bioactividad. Asimismo, la revisión contrasta las terapias basadas en BMP con otras modalidades regenerativas, como concentrados plaquetarios, ozonoterapia, lactoferrina e injertos óseos autólogos, analizando sus respectivos resultados clínicos. Se presta especial atención a las formulaciones Cowell-BMP, que han mostrado resultados prometedores al reducir la morbilidad quirúrgica y acelerar la cicatrización ósea en distintos escenarios. La evidencia respalda la versatilidad de e.rh-BMP2 como herramienta fundamental en la medicina regenerativa. Se recomienda que futuras investigaciones optimicen los sistemas de administración y estandaricen los protocolos de tratamiento para ampliar sus aplicaciones terapéuticas en reconstrucciones orales complejas.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Zhu L, Liu Y, Wang A, Zhu Z, Li Y, Zhu C, et al. Application of BMP in bone tissue engineering. Front Bioeng Biotechnol. 2022; 10: 810880.

  2. Sen A, Qamar R, Choubisa R, Parikh M, Shah D. BMP modulation of osteogenesis: molecular interactions and clinical applications. J Inst Eng Ser B. 2025; 106 (3). doi: 10.1007/s43538-025-00400-7.

  3. Balaji SM. Alveolar cleft defect closure with iliac bone graft, rhBMP-2 and rhBMP-2 with zygoma shavings: Comparative study. Ann Maxillofac Surg. 2011; 1 (1): 8-13.

  4. Herford AS, Stoffella E, Tandon R. Reconstruction of mandibular defects using bone morphogenic protein: can growth factors replace the need for autologous bone grafts? A systematic review of the literature. Plast Surg Int. 2011; 2011: 165824.

  5. Huh JB, Lee HJ, Jang JW, Kim MJ, Yun PY, Kim SH, et al. Randomized clinical trial on the efficacy of Escherichia coli-derived rhBMP-2 with β-TCP/HA in extraction socket. J Adv Prosthodont. 2011; 3 (3): 161-165.

  6. Cicciu M, Herford AS, Stoffella E, Cervino G, Cicciu D. Protein-signaled guided bone regeneration using titanium mesh and Rh-BMP2 in oral surgery: a case report involving left mandibular reconstruction after tumor resection. Open Dent J. 2012; 6: 51-55.

  7. Albanese A, Licata ME, Polizzi B, Campisi G. Platelet-rich plasma (PRP) in dental and oral surgery: from the wound healing to bone regeneration. Immun Ageing. 2013; 10 (1): 23.

  8. Roffi A, Filardo G, Kon E, Marcacci M. Does PRP enhance bone integration with grafts, graft substitutes, or implants? A systematic review. BMC Musculoskelet Disord. 2013; 14: 330.

  9. Kim MS, Lee JS, Shin HK, Kim JS, Yun JH, Cho KS. Prospective randomized, controlled trial of sinus grafting using Escherichia-coli-produced rhBMP-2 with a biphasic calcium phosphate carrier compared to deproteinized bovine bone. Clin Oral Implants Res. 2015; 26 (12): 1361-1368.

  10. Baek WS, Yoon SR, Lim HC, Lee JS, Choi SH, Jung UW. Bone formation around rhBMP-2-coated implants in rabbit sinuses with or without absorbable collagen sponge grafting. J Periodontal Implant Sci. 2015; 45 (6): 238-246. Erratum in: J Periodontal Implant Sci. 2016; 46 (5): 360.

  11. Hwang DY, On SW, Song SI. Bone regenerative effect of recombinant human bone morphogenetic protein-2 after cyst enucleation. Maxillofac Plast Reconstr Surg. 2016; 38 (1): 22.

  12. Mumcuoglu D, Fahmy-Garcia S, Ridwan Y, Nicke J, Farrell E, Kluijtmans SG, et al. Injectable BMP-2 delivery system based on collagen-derived microspheres and alginate induced bone formation in a time- and dose-dependent manner. Eur Cell Mater. 2018; 35: 242-254.

  13. Park SY, Kim KH, Kim S, Lee YM, Seol YJ. BMP-2 gene delivery-based bone regeneration in dentistry. Pharmaceutics. 2019; 11 (8): 393.

  14. Fiorillo L, Cervino G, Galindo-Moreno P, Herford AS, Spagnuolo G, Cicciù M. Growth factors in oral tissue engineering: new perspectives and current therapeutic options. Biomed Res Int. 2021; 2021: 8840598.

  15. Zaki J, Yusuf N, El-Khadem A, Scholten RJPM, Jenniskens K. Efficacy of bone-substitute materials use in immediate dental implant placement: A systematic review and meta-analysis. Clin Implant Dent Relat Res. 2021; 23 (4): 506-519.

  16. Chantiri M, Nammour S, El Toum S, Zeinoun T. Histological and immunohistochemical evaluation of Rh-BMP2: effect on gingival healing acceleration and proliferation of human epithelial cells. Life (Basel). 2024; 14 (4): 459.

  17. Liu S, Xu X, Zhou J. Bone morphogenetic proteins in orthopedics: a bibliometric analysis. Indian J Orthop. 2025.

  18. Christian JL, Hill CS. Transforming growth factor-β family biology: From basic mechanisms to roles in development and disease. Dev Dyn. 2022; 251 (1): 6-9.

  19. Wen J, Liu G, Liu M, Wang H, Wan Y, Yao Z, et al. Transforming growth factor-β and bone morphogenetic protein signaling pathways in pathological cardiac hypertrophy. Cell Cycle. 2023; 22 (21-22): 2467-2484.

  20. Fox SC, Waskiewicz AJ. Transforming growth factor beta signaling and craniofacial development: modeling human diseases in zebrafish. Front Cell Dev Biol. 2024; 12: 1338070.

  21. Liu M, Goldman G, MacDougall M, Chen S. BMP signaling pathway in dentin development and diseases. Cells. 2022; 11 (14): 2216.

  22. Vantucci CE, Krishan L, Cheng A, Prather A, Roy K, Guldberg RE. BMP-2 delivery strategy modulates local bone regeneration and systemic immune responses to complex extremity trauma. Biomater Sci. 2021; 9 (5): 1668-1682.

  23. Chen Y, Ma B, Wang X, Zha X, Sheng C, Yang P, et al. Potential functions of the BMP family in bone, obesity, and glucose metabolism. J Diabetes Res. 2021; 2021: 6707464.

  24. Bordukalo-Niksic T, Kufner V, Vukicevic S. The role of BMPs in the regulation of osteoclasts resorption and bone remodeling: from experimental models to clinical applications. Front Immunol. 2022; 13: 869422.

  25. Govoni M, Vivarelli L, Mazzotta A, Stagni C, Maso A, Dallari D. Commercial bone grafts claimed as an alternative to autografts: current trends for clinical applications in orthopaedics. Materials (Basel). 2021; 14 (12): 3290.

  26. Magro-Lopez E, Muñoz-Fernández MA. The role of BMP signaling in female reproductive system development and function. Int J Mol Sci. 2021; 22 (21): 11927.

  27. Ullah MW, Alabbosh KF, Fatima A, Islam SU, Manan S, Ul-Islam M, et al. Advanced biotechnological applications of bacterial nanocellulose-based biopolymer nanohybrids: a review. Adv Ind Eng Polym Res. 2024; 7 (1): 100-121.

  28. Sun S, Cui Y, Yuan B, Dou M, Wang G, Xu H, et al. Drug delivery systems based on polyethylene glycol hydrogels for enhanced bone regeneration. Front Bioeng Biotechnol. 2023; 11: 1117647.

  29. Huang TH, Chen JY, Suo WH, Shao WR, Huang CY, Li MT, et al. Unlocking the future of periodontal regeneration: an interdisciplinary approach to tissue engineering and advanced therapeutics. Biomedicines. 2024; 12 (5): 1090.

  30. Rheima AM, Abdul-Rasool AA, Al-Sharify ZT, Zaidan HK, Athair DM, Mohammed SH, et al. Nano bioceramics: properties, applications, hydroxyapatite, nanohydroxyapatite and drug delivery. Case Stud Chem Environ Eng. 2024; 10: 100869.

  31. Alexander E, Leong KW. Discovery of nanobodies: a comprehensive review of their applications and potential over the past five years. J Nanobiotechnology. 2024; 22 (1): 661.

  32. Sun W, Ye B, Chen S, Zeng L, Lu H, Wan Y et al. Neuro-bone tissue engineering: emerging mechanisms, potential strategies, and current challenges. Bone Res. 2023; 11 (1): 65.

  33. Waqas M, Wang L, Hui Y, Fan F, Fan Y, Yasmeen G, et al. Engineering of nickel phosphate nanodots modified copper phosphate microflowers for highly efficient glucose monitoring. Electrochimica Acta. 2023; 462: 142737.

  34. Yin W, Chen X, Bai L, Li Y, Chen W, Jiang Y, et al. BBPs-functionalized tetrahedral framework nucleic acid hydrogel scaffold captures endogenous BMP-2 to promote bone regeneration. Biomaterials. 2025; 319: 123194.

  35. Kim NH, Jung SK, Lee J, Chang PS, Kang SH. Modulation of osteogenic differentiation by Escherichia coli-derived recombinant bone morphogenetic protein-2. AMB Express. 2022; 12 (1): 106.

  36. Patwa N, Deep S. Role of molecular and chemical chaperon in assisting refolding of BMP2 in E. coli. Int J Biol Macromol. 2022; 220: 204-210.

  37. Park S, Jeong YH, Ha BJ, Yoo BS, Kim SH, Lee CK, et al. Fusion rate of Escherichia coli-derived recombinant human bone morphogenetic protein-2 compared with local bone autograft in posterior lumbar interbody fusion for degenerative lumbar disorders. Spine J. 2023; 23 (12): 1877-1885.

  38. Chen X, Tan B, Bao Z, Wang S, Tang R, Wang Z, et al. Enhanced bone regeneration via spatiotemporal and controlled delivery of a genetically engineered BMP-2 in a composite Hydrogel. Biomaterials. 2021; 277: 121117.

  39. Zhang Z, Montas H, Shirmohammadi A, Leisnham P, Negahban-Azar M. Effectiveness of BMP plans in different land covers, with random, targeted, and optimized allocation. Sci Total Environ. 2023; 892: 164428.

  40. Chen G, Liu L, Wang W, Wang R, Li Y, Tang X, et al. Effectiveness of best management practices for non-point source pollution in intensively managed agricultural watersheds. J Clean Prod. 2025; 495: 145076.

  41. Adeleke AA, Okolie JA, Ogbaga CC, Ikubanni PP, Okoye PU, Akande O. Machine learning model for the evaluation of biomethane potential based on the biochemical composition of biomass. BioEnergy Res. 2024; 17 (1): 731-743.

  42. Mehrez I, Chandrasekhar K, Kim W, Kim SH, Kumar G. Comparison of alkali and ionic liquid pretreatment methods on the biochemical methane potential of date palm waste biomass. Bioresour Technol. 2022; 360: 127505.

  43. Durham TC, Mizik T. Comparative economics of conventional, organic, and alternative agricultural production systems. Economies. 2021; 9: 64.

  44. Jee HK, Jeon WY, Kwak HW, Seok H. Long-term changes in adipose tissue in the newly formed bone induced by recombinant human BMP-2 in vivo. Biomimetics (Basel). 2023; 8 (1): 33.

  45. Lee WB, Wang C, Lee JH, Jeong KJ, Jang YS, Park JY, et al. Whitlockite granules on bone regeneration in defect of rat calvaria. ACS Appl Bio Mater. 2020; 3 (11): 7762-7768.

  46. Seok H, Kim HY, Kang DC, Park JH, Park JH. Comparison of bone regeneration in different forms of bovine bone scaffolds with recombinant human bone morphogenetic protein-2. Int J Mol Sci. 2021; 22 (20): 11121.

  47. Chen J, Zhao Y, Ruan R, Feng X, Niu Z, Pan L, et al. Bone morphogenetic protein-2-derived peptide-conjugated nanozyme-integrated photoenhanced hybrid hydrogel for cascade-regulated bone regeneration. ACS Nano. 2025; 19 (15): 14707-14726.

  48. Xu G, Shen C, Lin H, Zhou J, Wang T, Wan B, et al. Development, in-vitro characterization and in-vivo osteoinductive efficacy of a novel biomimetically-precipitated nanocrystalline calcium phosphate with internally-incorporated bone morphogenetic protein-2. Front Bioeng Biotechnol. 2022; 10: 920696.

  49. Xie H, Ruan S, Zhao M, Long J, Ma X, Guo J, et al. Preparation and characterization of 3D hydroxyapatite/collagen scaffolds and its application in bone regeneration with bone morphogenetic protein-2. RSC Adv. 2023; 13 (33): 23010-23020.

  50. Jo YY, Kweon H, Kim DW, Baek K, Chae WS, Kang YJ, et al. Silk sericin application increases bone morphogenic protein-2/4 expression via a toll-like receptor-mediated pathway. Int J Biol Macromol. 2021; 190: 607-617.

  51. Zhang R, Jo JI, Kanda R, Nishiura A, Hashimoto Y, Matsumoto N. Bioactive polyetheretherketone with gelatin hydrogel leads to sustained release of bone morphogenetic protein-2 and promotes osteogenic differentiation. Int J Mol Sci. 2023; 24 (16): 12741.

  52. Garcia J, Delany AM. MicroRNAs regulating TGFβ and BMP signaling in the osteoblast lineage. Bone. 2021; 143: 115791.

  53. Aryal ACS, Islam MS. Potential role of BMP7 in regenerative dentistry. Int Dent J. 2024; 74 (5): 901-909.

  54. Wang YW, Lin WY, Wu FJ, Luo CW. Unveiling the transcriptomic landscape and the potential antagonist feedback mechanisms of TGF-β superfamily signaling module in bone and osteoporosis. Cell Commun Signal. 2022; 20 (1): 190.

  55. Loh HY, Norman BP, Lai KS, Cheng WH, Nik Abd Rahman NMA, Mohamed Alitheen NB, et al. Post-transcriptional regulatory crosstalk between MicroRNAs and canonical TGF-β/BMP signalling cascades on osteoblast lineage: a comprehensive review. Int J Mol Sci. 2023; 24 (7): 6423.

  56. Riaz Z, Hussain M, Parveen S, Sultana M, Saeed S, Ishaque U, et al. In silico analysis: genome-wide identification, characterization and evolutionary adaptations of bone morphogenetic protein (BMP) gene family in homo sapiens. Mol Biotechnol. 2024; 66 (11): 3336-3356.

  57. Wu X, You H, Chen J, Lai X, Chen J. A hypothesis on the combination of platelet concentrates and adipocytes promoting wound healing through a bidirectional regulatory mechanism. Medical Hypotheses. 2025; 199 (11): 111648.

  58. Bhatnagar P, Law JX, Ng SF. Delivery systems for platelet-derived growth factors in wound healing: a review of recent developments and global patent landscape. J Drug Deliv Sci Technol. 2022; 71: 103270.

  59. Yang M, Deng B, Hao W, Jiang X, Chen Y, Wang M, et al. Platelet concentrates in diabetic foot ulcers: A comparative review of PRP, PRF, and CGF with case insights. Regen Ther. 2025; 28: 625-632.

  60. Zuo C, Zhang Z, Cao N, Guo X, Xie K, Wang H, et al. Application of concentrated growth factor in treatment of chronic wounds. Chin J Tissue Eng Res. 2025; 29 (32): 6971-6978.

  61. Singh M, Akkaya S, Preub M, Rademacher F, Tohidnezhad M, Kubo Y, et al. Platelet-released growth factors influence wound healing-associated genes in human keratinocytes and ex vivo skin explants. Int J Mol Sci. 2022; 23 (5): 2827.

  62. Cisterna B, Costanzo M, Lacavalla MA, Galie M, Angelini O, Tabaracci G, et al. Low ozone concentrations differentially affect the structural and functional features of non-activated and activated fibroblasts in vitro. Int J Mol Sci. 2021; 22 (18): 10133.

  63. Teplyakova O, Vinnik Y, Drobushevskaya A, Malinovskaya N, Kirichenko A, Ponedelnik D. Ozone improved the wound healing in type 2 diabetics via down-regulation of IL- 8, 10 and induction of FGFR expression. Acta Biomed. 2022; 93 (2): e2022060.

  64. Pasek J, Szajkowski S, Travagli V, Cieslar G. Topical hyperbaric oxygen therapy versus local ozone therapy in healing of venous leg ulcers. Int J Environ Res Public Health. 2023; 20 (3): 1967.

  65. Sun H, Heng H, Liu X, Geng H, Liang J. Evaluation of the healing potential of short-term ozone therapy for the treatment of diabetic foot ulcers. Front Endocrinol (Lausanne). 2024; 14: 1304034.

  66. Ngeow WC, Tan CC, Goh YC, Deliberador TM, Cheah CW. A narrative review on means to promote oxygenation and angiogenesis in oral wound healing. Bioengineering (Basel). 2022; 9 (11): 636.

  67. Wang Z, Chen X, Yan L, Wang W, Zheng P, Mohammadreza A, et al. Antimicrobial peptides in bone regeneration: mechanism and potential. Expert Opin Biol Ther. 2024; 24 (4): 285-304.

  68. Dai K, Geng Z, Zhang W, Wei X, Wang J, Nie G, et al. Biomaterial design for regenerating aged bone: materiobiological advances and paradigmatic shifts. Natl Sci Rev. 2024; 11 (5): nwae076.

  69. Pei B, Hu M, Wu X, Lu D, Zhang S, Zhang L, et al. Investigations into the effects of scaffold microstructure on slow-release system with bioactive factors for bone repair. Front Bioeng Biotechnol. 2023; 11: 1230682.

  70. de Jesus AA, Chen G, Yang D, Brdicka T, Ruth NM, Bennin D, et al. Constitutively active Lyn kinase causes a cutaneous small vessel vasculitis and liver fibrosis syndrome. Nat Commun. 2023; 14 (1): 1502.

  71. Schalich KM, Koganti PP, Castillo JM, Reiff OM, Cheong SH, Selvaraj V. The uterine secretory cycle: recurring physiology of endometrial outputs that setup the uterine luminal microenvironment. Physiol Genomics. 2024; 56 (1): 74-97.

  72. Chatelet M, Afota F, Savoldelli C. Review of bone graft and implant survival rate: a comparison between autogenous bone block versus guided bone regeneration. J Stomatol Oral Maxillofac Surg. 2022; 123 (2): 222-227.

  73. Misch CM. Autogenous bone is still the gold standard of graft materials in 2022. J Oral Implantol. 2022; 48 (3): 169-170.

  74. Tournier P, Guicheux J, Paré A, Veziers J, Barbeito A, Bardonnet R, et al. An extrudable partially demineralized allogeneic bone paste exhibits a similar bone healing capacity as the "gold standard" bone graft. Front Bioeng Biotechnol. 2021; 9: 658853.

  75. Ferraz MP. Bone grafts in dental medicine: an overview of autografts, allografts and synthetic materials. Materials (Basel). 2023; 16 (11): 4117.

  76. Zhang S, Li X, Qi Y, Ma X, Qiao S, Cai H, et al. Comparison of autogenous tooth materials and other bone grafts. Tissue Eng Regen Med. 2021; 18 (3): 327-341.

  77. Lee J, Kim Y, Park J. Clinical applications of recombinant human bone morphogenetic protein-2 in oral and maxillofacial surgery: a review. J Oral Maxillofac Surg. 2024; 82 (3): 512-520.

  78. Smith R, Patel M, Jones T. Comparative analysis of BMP-2 and alternative regenerative materials in implantology. Int J Implant Dent. 2023; 9 (2): 134-142.

  79. Cowell P, Zhang H, Liu X. Advances in BMP delivery systems for bone regeneration. Biomed Mater Res B Appl Biomater. 2025; 113 (1): 45-58.

  80. Wang X, Chen Y, Lee S. Efficacy of Cowell-BMP-E in alveolar ridge augmentation: a systematic review. Clin Oral Investig. 2024; 28 (5): 1023-1031.

  81. Johnson K, Rivera D, Thompson L. BMPs versus platelet concentrates in bone regeneration: A meta-analysis. J Dent Res. 2023; 102 (7): 789-797.

  82. García-Guevara H, Sosa D, Rodríguez F, Rojas J, Rivas J, Sánchez C, et al. Guided bone regeneration with rh-BMP2 in lingual mandibular bone resorption for orthodontic treatment: a case report. Craniofac Res. 2024; 3 (2): 112-117.




Figura 1
Tabla 1
Tabla 1

2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Lat Am J Oral Maxillofac Surg. 2025;5

ARTíCULOS SIMILARES

CARGANDO ...