medigraphic.com
SPANISH

TIP Revista Especializada en Ciencias Químico-Biológicas

ISSN 2395-8723 (Electronic)
ISSN 1405-888X (Print)
TIP Revista Especializada en Ciencias Químico-Biológicas
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2022, Number 1

<< Back Next >>

TIP Rev Esp Cienc Quim Biol 2022; 25 (1)

Metagenomics and metatranscriptomics to mitigate methane emissions by ruminant animals

Martínez-Muñoz DS, Rivera-Cerón F, Palacios-Solórzano I, Ramírez-Martínez BA, Molina-Aguilar C, Bárbara BM
Full text How to cite this article

Language: Spanish
References: 89
Page: 1-18
PDF size: 451.18 Kb.


Key words:

ruminant, microbiome, methanogenesis, metagenomics, metatranscriptomics.

ABSTRACT

Ruminant livestock is considered one of the largest anthropogenic sources of methane gas. Methanogenesis is part of the digestive process of these animals and is mediated by the microorganisms present in their rumen, responsible not only for the loss of energy in the animal, which directly impacts the productivity of cattle, but also for the production of methane that contributes to the increase of the greenhouse effect. The functional characteristics of the rumen microbiome have not been well described because most of the microorganisms present are not cultivable under laboratory conditions, but can be studied using molecular techniques, such as metagenomics and metatranscriptomics. The objectives of this review article, in addition to compiling and disseminating information on the environmental impact of the livestock industry, are to describe some of the experimental and bioinformatic strategies used in the analysis of the ruminal microbiome from metagenomics and metatranscriptomics, to reduce emissions of methane by cattle.


REFERENCES

  1. Abubucker, S., Segata, N., Goll, J., Schubert, A. M., Izard,J., Cantarel, B. L., Rodriguez-Mueller, B., Zucker, J.,Thiagarajan, M., Henrissat, B., White, O., Kelley, S. T.,Methé, B., Schloss, P. D., Gevers, D., Mitreva, M. &Huttenhower, C. (2012). Metabolic Reconstruction forMetagenomic Data and Its Application to the HumanMicrobiome. PLOS Computational Biology, 8(6),e1002358. https://doi.org/10.1371/journal.pcbi.1002358

  2. Aguiar-Pulido, V., Huang, W., Suarez-Ulloa, V., Cickovski,T., Mathee, K. & Narasimhan, G. (2016). Metagenomics,Metatranscriptomics, and Metabolomics Approaches forMicrobiome Analysis. Evolutionary Bioinformatics Online,12(S1), 5–16. https://doi.org/10.4137/EBO.S36436

  3. Berg Miller, M. E., Yeoman, C. J., Chia, N., Tringe, S. G.,Angly, F. E., Edwards, R. A., Flint, H. J., Lamed, R., Bayer,E. A. & White, B. A. (2012). Phage-bacteria relationshipsand CRISPR elements revealed by a metagenomicsurvey of the rumen microbiome. EnvironmentalMicrobiology, 14(1), 207–227. https://doi.org/10.1111/j.1462-2920.2011.02593.x

  4. Bernal, M. L. (2015). La era de las ciencias ómicas. Academiade Farmacia “Reino de Aragón.” Recuperado de https://www.academiadefarmaciadearagon.es/docs/Documentos/Documento73.pdf

  5. Bikel, S., Valdez-Lara, A., Cornejo-Granados, F., Rico,K., Canizales-Quinteros, S., Soberón, X., Del Pozo-Yauner, L. & Ochoa-Leyva, A. (2015). Combiningmetagenomics, metatranscriptomics and viromics to explorenovel microbial interactions: Towards a systems-levelunderstanding of human microbiome. Computational andStructural Biotechnology Journal, 13, 390–401. https://doi.org/10.1016/j.csbj.2015.06.001

  6. Boadi, D., Benchaar, C., Chiquette, J. & Massé, D. (2011).Mitigation strategies to reduce enteric methane emissionsfrom dairy cows: Update review. Canadian Journal ofAnimal Science, 84(3), 319-335. https://doi.org/10.4141/A03-109

  7. Caballero, M., Lozano, S. & Ortega, B. (2007). Efectoinvernadero, calentamiento global y cambio climático: Unaperspectiva desde las ciencias de la tierra. Revista DigitalUniversitaria, 8(10), 2-12. http://www.revista.unam.mx/vol.8/num10/art78/int78.htm

  8. Castillo , C., Abuelo, A. & Hernández, J. (9 de mayo de 2016).El desafío de la metanogénesis en bovinos. NutriNews, Larevista de nutrición animal. Recuperado el 24 de agostode 2020 de https://nutricionanimal.info/el-desafio-de-lametanogenesis-en-bovinos/.

  9. Castillo-González, A. R., Burrola-Barraza, M. E., Domínguez-Viveros, J. & Chávez-Martínez, A. (2014). Rumenmicroorganisms and fermentation. Archivos de MedicinaVeterinaria, 46(3), 349–361. https://doi.org/10.4067/S0301-732X2014000300003

  10. Choi, K. Y., Lee, T. K. & Sul, W. J. (2015). Metagenomic Analysisof Chicken Gut Microbiota for Improving Metabolismand Health of Chickens—A Review. Asian-AustralasianJournal of Animal Sciences, 28(9), 1217–1225. https://doi.org/10.5713/ajas.15.0026

  11. Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell,J., Chhabra, A., DeFries, R., Galloway, J., Heimann, M.,Jones, C., Le Quéré, C., Myneni, R.B., Piao, S. & Thornton,P. (2013). Carbon and Other Biogeochemical Cycles.In: Climate Change 2013: The Physical Science Basis.Contribution of Working Group I to the Fifth AssessmentReport of the Intergovernmental Panel on Climate Change[Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen,J.Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley(Ed.)].(pp. 465-570). Recuperado de https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_Chapter06_FINAL.pdf

  12. Cortés-López, N., Ordóñez, P. & Viveros, J. (2020). Herramientasmoleculares utilizadas para el análisis metagenómico.Revista Mexicana de Ciencias Pecuarias, 11(4), 1150–1173.https://doi.org/10.22319/rmcp.v11i4.5202

  13. Creevey, C. J., Kelly, W. J., Henderson, G. & Leahy, S. C.(2014). Determining the culturability of the rumen bacterialmicrobiome. Microbial Biotechnology, 7(5), 467–479.https://doi.org/10.1111/1751-7915.12141

  14. Danielsson, R., Dicksved, J., Sun, L., Gonda, H., Müller, B.,Schnürer, A. & Bertilsson, J. (2017). Methane Productionin Dairy Cows Correlates with Rumen Methanogenic andBacterial Community Structure. Frontiers in Microbiology,8(226) https://doi.org/10.3389/fmicb.2017.00226

  15. Del Rosario, M. (1999). Bacterias ruminales. Sitio Argentinode Producción Animal. Recuperado de https://www.produccion-animal.com.ar/informacion_tecnica/manejo_del_alimento/69-bacterias_ruminales.pdf

  16. Denman, S. E., Martínez Fernández, G., Shinkai, T., Mitsumori,M. & McSweeney, C. S. (2015). Metagenomic analysisof the rumen microbial community following inhibitionof methane formation by a halogenated methane analog.Frontiers in Microbiology, 6(1087). https://doi.org/10.3389/fmicb.2015.01087

  17. Duin, E. C., Wagner, T., Shima, S., Prakash, D., Cronin, B.,Yáñez-Ruiz, D. R., Duval, S., Rümbeli, R., Stemmler, R. T.,Thauer, R. K. & Kindermann, M. (2016). Mode of actionuncovered for the specific reduction of methane emissionsfrom ruminants by the small molecule 3-nitrooxypropanol.Proceedings of the National Academy of Sciences, 113(22),6172–6177. https://doi.org/10.1073/pnas.1600298113

  18. Fouts, D. E., Szpakowski, S., Purushe, J., Torralba, M.,Waterman, R. C., MacNeil, M. D., Alexander, L. J. &Nelson, K. E. (2012). Next generation sequencing to defineprokaryotic and fungal diversity in the bovine rumen.PloS One, 7(11), e48289. https://doi.org/10.1371/journal.pone.0048289

  19. García, I. A. (2016). Sistema digestivo en rumiantes:Anatomofisiología. Universidad Nacional Autónomade Chihuahua, 2(1), 2-7. https://www.angelfire.com/ar/iagg101/docum/digrum.PDF

  20. Gerber, P. J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C.,Dijkman, J., Falcucci, A. & Tempio, G. (2013). Tacklingclimate change through livestock: A global assessment ofemissions and mitigation opportunities. Recuperado dehttps://www.fao.org/3/i3437e/i3437e.pdf

  21. Giuliodori, M., Mattioli, G., Picco, S. & Relling, A. (2013).Fisiología digestiva y metabólica de los rumiantes. CCBAcademic Press, 104(3), 978-987. http://hdl.handle.net/11336/151276

  22. Global Methane Initiative. (2020). Global Methane Emissionsand Mitigation Opportunities. Recuperado el 27 de enerode 2021 de https://www.globalmethane.org/documents/analysis_fs_en.pdf.

  23. Henderson, G., Cox, F., Kittelmann, S., Miri, V. H., Zethof, M.,Noel, S. J., Waghorn, G. C., & Janssen, P. H. (2013). Effectof DNA extraction methods and sampling techniques onthe apparent structure of cow and sheep rumen microbialcommunities. PloS One, 8(9), e74787. https://doi.org/10.1371/journal.pone.0074787

  24. Henderson, G., Cox, F., Ganesh, S., Jonker, A., Young, W.& Janssen, P. H. (2015). Rumen microbial communitycomposition varies with diet and host, but a core microbiomeis found across a wide geographical range. ScientificReports, 5(1), 14567. https://doi.org/10.1038/srep14567

  25. Hernández, M., Quijada, N. M., Rodríguez-Lázaro, D. & Eiros,J. M. (2020). Aplicación de la secuenciación masiva yla bioinformática al diagnóstico microbiológico clínico.Revista Argentina de Microbiología, 52(2), 150–161. https://doi.org/10.1016/j.ram.2019.06.003

  26. Hoegh-Guldberg, O., Jacob, D., Taylor, M., Bindi, M., Brown,S., Camilloni, I., Diedhiou, A., Djalante, R., Ebi, K. L.,Engelbrecht, F., Hijioka, Y., Mehrotra, S., Payne, A.,Seneviratne, S. I., Thomas, A., Warren, R. & Zhou, G.(2018). Impacts of 1.5°C of Global Warming on Naturaland Human Systems. In: Global Warming of 1.5°C. AnIPCC Special Report on the impacts of global warmingof 1.5°C above pre-industrial levels and related globalgreenhouse gas emission pathways, in the context ofstrengthening the global response to the threat of climatechange, sustainable development, and efforts to eradicatepoverty. [Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D.Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia,C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen,X. Zhou, M.I.Gomis, E. Lonnoy, T.Maycock, M.Tignor,and T. Waterfield (eds.)]. (pp. 177-181). Recuperado dehttps://www.ipcc.ch/site/assets/uploads/sites/2/2019/06/SR15_Chapter3_Low_Res.pdf

  27. Hornung, B., van den Bogert, T., Davids, M., Martins dos Santos,V., Plugge, C., Schaap, P. & Smidt, H. (2018). The RumenMetatranscriptome Landscape Reflects Dietary Adaptationand Methanogenesis in Lactating Dairy Cows, 116, 245-257. https://doi.org/10.1101/275883

  28. Hrdlickova, R., Toloue, M. & Tian, B. (2017). RNA-Seqmethods for transcriptome analysis. Wiley interdisciplinaryreviews. RNA, 8(1), e1364 10.1002/wrna.1364. https://doi.org/10.1002/wrna.1364

  29. IPCC (2007). Climate Change 2007: Synthesis Report.Contribution of Working Groups I, II and III to the FourthAssessment Report of the Intergovernmental Panel onClimate Change [Core Writing Team, Pachauri, R.K andReisinger, A. (eds.)]. IPCC, Geneva, Switzerland, 104 pp.

  30. Jami, E., Israel, A., Kotser, A. & Mizrahi, I. (2013). Exploringthe bovine rumen bacterial community from birth toadulthood. The ISME Journal, 7(6), 1069–1079. https://doi.org/10.1038/ismej.2013.2

  31. Janssen, P. H. & Kirs, M. (2008). Structure of the ArchaealCommunity of the Rumen. Applied and EnvironmentalMicrobiology, 74(12), 3619–3625. https://doi.org/10.1128/AEM.02812-07

  32. Johnson, K. A. & Johnson, D. E. (1995). Methane emissionsfrom cattle. Journal of Animal Science, 73(8), 2483–2492.https://doi.org/10.2527/1995.7382483x

  33. Jovel, J., Patterson, J., Wang, W., Hotte, N., O’Keefe, S.,Mitchel, T., Perry, T., Kao, D., Mason, A. L., Madsen,K. L. & Wong, G. K.-S. (2016). Characterization of theGut Microbiome Using 16S or Shotgun Metagenomics.Frontiers in Microbiology, 7(459). https://doi.org/10.3389/fmicb.2016.00459

  34. Kaul, S., Sharma, T. & Dhar, M. K. (2016). “Omics” Tools forBetter Understanding the Plant–Endophyte Interactions.Frontiers in Plant Science, 7(955). https://doi.org/10.3389/fpls.2016.00955

  35. Kopylova, E., Noé, L. & Touzet, H. (2012). SortMeRNA: Fast andaccurate filtering of ribosomal RNAs in metatranscriptomicdata. Bioinformatics, 28(24), 3211–3217. https://doi.org/10.1093/bioinformatics/bts611

  36. Pavan-Kumar, A., Babu, G. & Lakra, W. S. (2015). DNAMetabarcoding: A New Approach for Rapid BiodiversityAssessment. Journal of Cell Science and Molecular Biology,2(1), 111. https://www.opensciencepublications.com/fulltextarticles/JCMB-2350-0190-2-111.html

  37. Li, F., & Guan, L. L. (2017). Metatranscriptomic ProfilingReveals Linkages between the Active Rumen Microbiomeand Feed Efficiency in Beef Cattle. Applied andEnvironmental Microbiology, 83(9), e00061-17. https://doi.org/10.1128/AEM.00061-17

  38. Li, F., Hitch, T. C. A., Chen, Y., Creevey, C. J. & Guan, L. L.(2019). Comparative metagenomic and metatranscriptomicanalyses reveal the breed effect on the rumen microbiomeand its associations with feed efficiency in beef cattle.Microbiome, 7(6), 2-21. https://doi.org/10.1186/s40168-019-0618-5

  39. Li, F., Neves, A. L. A., Ghoshal, B. & Guan, L. L.(2018). Symposium review: Mining metagenomic andmetatranscriptomic data for clues about microbial metabolicfunctions in ruminants1. Journal of Dairy Science, 101(6),5605–5618. https://doi.org/10.3168/jds.2017-13356

  40. Looft, T., Johnson, T. A., Allen, H. K., Bayles, D. O., Alt, D. P.,Stedtfeld, R. D., Sul, W. J., Stedtfeld, T. M., Chai, B., Cole,J. R., Hashsham, S. A., Tiedje, J. M. & Stanton, T. B. (2012).In-feed antibiotic effects on the swine intestinal microbiome.Proceedings of the National Academy of Sciences of theUnited States of America, 109(5), 1691–1696. https://doi.org/10.1073/pnas.1120238109

  41. Lyu, Z., Shao, N., Akinyemi, T. & Whitman, W. B. (2018).Methanogenesis. Current Biology, 28(13), R727–R732.https://doi.org/10.1016/j.cub.2018.05.021

  42. Maeder, D. L., Anderson, I., Brettin, T. S., Bruce, D. C., Gilna,P., Han, C. S., Lapidus, A., Metcalf, W.W., Saunders, E.,Tapia, R. & Sowers, K. R. (2006). The Methanosarcinabarkeri genome: comparative analysis with Methanosarcinaacetivorans and Methanosarcina mazei reveals extensiverearrangement within methanosarcinal genomes. Journal ofbacteriology, 188(22), 7922–7931. https://doi.org/10.1128/JB.00810-06

  43. McCann, J. C., Wickersham, T. A. & Loor, J. J. (2014). HighthroughputMethods Redefine the Rumen Microbiomeand Its Relationship with Nutrition and Metabolism.Bioinformatics and Biology Insights, 8, 109–125. https://doi.org/10.4137/BBI.S15389

  44. Mizrahi, I. & Jami, E. (2018). Review: The compositionalvariation of the rumen microbiome and its effect onhost performance and methane emission. Animal: AnInternational Journal of Animal Bioscience, 12(2), 220–232.https://doi.org/10.1017/S1751731118001957

  45. Morgavi, D. P., Forano, E., Martin, C. & Newbold, C. J.(2010). Microbial ecosystem and methanogenesis inruminants. Animal: An International Journal of AnimalBioscience, 4(7), 1024–1036. https://doi.org/10.1017/S1751731110000546

  46. Moss, A. R., Jouany, J. P. & Newbold, J. (2000). Methaneproduction by ruminants: Its contribution to globalwarming. Annales de Zootechnie, 49(3), 231–253. https://doi.org/10.1051/animres:2000119

  47. Nayfach, S. & Pollard, K. S. (2016). Toward Accurate andQuantitative Comparative

  48. Metagenomics. Cell, 166(5), 1103–1116. https://doi.org/10.1016/j.cell.2016.08.007

  49. Opio, C., Gerber, P., Motter, A., Falcucci, A., Tempio, G.,MacLeod, M., Vellinga, T., Henderson, B. & Steinfeld, H.(2013). Greenhouse gas emissions from ruminant supplychains – A global life cycle assessment. Recuperado dehttp://www.fao.org/publications/card/es/c/ff905a47-1479-595c-b891-d345ea13c0a0/.

  50. Osnaya, P., Fernández Bremauntz, A. & Martínez, J.(2004). Cambio climático: Una visión desde México.Recuperado de http://www.data.sedema.cdmx.gob.mx/cambioclimaticocdmx/images/biblioteca_cc/Cambioclimatico-una-vision-desde-Mexico-(Julia-Martinez-y-Adrian-Fernandez-Bremauntz-compilado.pdf

  51. Organización de las Naciones Unidas (1 de noviembre de 2021)Conferencia de las Naciones Unidas sobre el CambioClimático (CP 26). Recuperado de https://www.un.org/es/food-systems-summit-2021-es/conferencia-de-lasnaciones-unidas-sobre-el-cambio-climático-cp-26

  52. Pacheco-Arjona, J. R. & Sandoval-Castro, C. A. (2018).Rumen metagenome sequencing technology. Tropical andSubtropical Agroecosystems, 21, 587-598. https://www.revista.ccba.uady.mx/ojs/index.php/TSA/article/view/2780

  53. Parish, J., Rivera, D. & Bolan, H. (2017). Understandingthe Ruminant Animal Digestive System. Recuperadoel 17 de junio de 2020. http://extension.msstate.edu/publications/publications/understanding-the-ruminantanimal-digestive-system

  54. Paz, A., Gonzalez, M. & Crawford, A. J. (2011). Códigos debarras de la vida: introducción y perspectiva. Acta BiológicaColombiana, 16(3), 161–176. http://www.scielo.org.co/scielo.php?script=sci_abstract&pid=S0120-548X2011000300011&lng=en&nrm=iso&tlng=es

  55. Pérez, E. & Sirias, R. (2007). Transferencia de líquido ruminalo transfaunación en terneros de 2 a 4 meses con trastornosde poco desarrollo corporal en la Finca las Mercedes dela UNA. Repositorio Institucional UNA, 70, 438. https://repositorio.una.edu.ni/id/eprint/1395

  56. Servicio de Información Alimentaria y Pesquera (14 deseptiembre de 2017). Rumiantes: Los que sí clasifican.Recuperado el 5 de junio de 2020 de http://www.gob.mx/siap/articulos/rumiantes-los-que-si-clasifican

  57. Petrosino, J. F., Highlander, S., Luna, R. A., Gibbs, R. A.& Versalovic, J. (2009). Metagenomic Pyrosequencingand Microbial Identification. Clinical Chemistry, 55(5),856–866. https://doi.org/10.1373/clinchem.2008.107565

  58. Ramírez, J. F., Posada Ochoa, S. & Noguera, R. (2014).Metanogénesis ruminal y estrategias para su mitigación.CES Medicina Veterinaria y Zootecnia, 9(2), 307–323. http://www.scielo.org.co/scielo.php?script=sci_abstract&pid=S1900-96072014000200014&lng=en&nrm=iso&tlng=es

  59. Reuter, J. A., Spacek, D. & Snyder, M. P. (2015). High-ThroughputSequencing Technologies. Molecular Cell, 58(4), 586–597.https://doi.org/10.1016/j.molcel.2015.05.004

  60. Rey, M., Enjalbert, F., Combes, S., Cauquil, L., Bouchez, O.& Monteils, V. (2014). Establishment of ruminal bacterialcommunity in dairy calves from birth to weaning issequential. Journal of Applied Microbiology, 116(2),245–257. https://doi.org/10.1111/jam.12405

  61. Ritchie, H. & Roser, M. (2020). Environmental impacts of foodproduction. Our World in Data. Recuperado de https://ourworldindata.org/environmental-impacts-of-food

  62. RMG Network—Hungate1000. (2016). Hungate 100- Acatalogue of reference genomes from the rumen microbiome.Recuperado el 12 de abril de 2021 de http://www.rmgnetwork.org/hungate1000.html

  63. Roehe, R., Dewhurst, R. J., Duthie, C.-A., Rooke, J. A.,McKain, N., Ross, D. W., Hyslop, J. J., Waterhouse, A.,Freeman, T. C., Watson, M. & Wallace, R. J. (2016). BovineHost Genetic Variation Influences Rumen MicrobialMethane Production with Best Selection Criterion forLow Methane Emitting and Efficiently Feed ConvertingHosts Based on Metagenomic Gene Abundance. PLoSGenetics, 12(2), e1005846. https://doi.org/10.1371/journal.pgen.1005846

  64. Ross, E. M., Moate, P. J., Bath, C. R., Davidson, S. E., Sawbridge,T. I., Guthridge, K. M., Cocks, B. G. & Hayes, B. J. (2012).High throughput whole rumen metagenome profiling usinguntargeted massively parallel sequencing. BMC Genetics,13(53) https://doi.org/10.1186/1471-2156-13-53

  65. Ross, E. M., Moate, P. J., Marett, L., Cocks, B. G. & Hayes, B.J. (2013). Investigating the effect of two methane-mitigatingdiets on the rumen microbiome using massively parallelsequencing. Journal of Dairy Science, 96(9), 6030–6046.https://doi.org/10.3168/jds.2013-6766

  66. Ruppert, K. M., Kline, R. J. & Rahman, M. S. (2019). Past,present, and future perspectives of environmental DNA(eDNA) metabarcoding: A systematic review in methods,monitoring, and applications of global eDNA. GlobalEcology and Conservation, 17(2019), e00547. https://doi.org/10.1016/j.gecco.2019.e00547

  67. Secretaría de Medio Ambiente y Recursos Naturales e InstitutoNacional de Ecología y Cambio Climático (2018). México,Sexta Comunicación Nacional y Segundo Informe Bienalde Actualización ante la Convención Marco de lasNaciones Unidas sobre el Cambio Climático. Recuperadode http://cambioclimatico.gob.mx:8080/xmlui/handle/publicaciones/117

  68. Seshadri, R., Leahy, S. C., Attwood, G. T., Teh, K. H., Lambie,S. C., Cookson, A. L., Eloe-Fadrosh, E. A., Pavlopoulos,G. A., Hadjithomas, M., Varghese, N. J., Paez-Espino, D.,Perry, R., Henderson, G., Creevey, C. J., Terrapon, N.,Lapebie, P., Drula, E., Lombard, V., Rubin, E., Kyrpides,N.C., Henrissat, B., Woyke, T., Ivanova, N.N. & Kelly, W.J. (2018). Cultivation and sequencing of rumen microbiomemembers from the Hungate1000 Collection. NatureBiotechnology, 36(4), 359–367. https://doi.org/10.1038/nbt.4110

  69. Shakya, M., Lo, C. C. & Chain, P. S. G. (2019). Advancesand Challenges in Metatranscriptomic Analysis.Frontiers in Genetics, 10(904), https://doi.org/10.3389/fgene.2019.00904

  70. Sharpton, T. J. (2014). An introduction to the analysis of shotgunmetagenomic data. Frontiers in Plant Science, 5(209).https://doi.org/10.3389/fpls.2014.00209

  71. Shi, W., Moon, C. D., Leahy, S. C., Kang, D., Froula, J.,Kittelmann, S., Fan, C., Deutsch, S., Gagic, D., Seedorf,H., Kelly, W. J., Atua, R., Sang, C., Soni, P., Li, D.,Pinares-Patiño, C. S., McEwan, J. C., Janssen, P. H., Chen,F., Visel, A., Wang, Z., Attwood, G. T. & Rubin, E. M.(2014). Methane yield phenotypes linked to differentialgene expression in the sheep rumen microbiome. GenomeResearch, 24(9), 1517–1525. https://doi.org/10.1101/gr.168245.113

  72. Söllinger, A., Tveit, A. T., Poulsen, M., Noel, S. J., Bengtsson,M., Bernhardt, J., Frydendahl Hellwing, A. L., Lund, P.,Riedel, K., Schleper, C., Højberg, O. & Urich, T. (2018).Holistic Assessment of Rumen Microbiome Dynamicsthrough Quantitative Metatranscriptomics RevealsMultifunctional Redundancy during Key Steps of AnaerobicFeed Degradation. MSystems, 3(4), e00038-18. https://doi.org/10.1128/mSystems.00038-18

  73. Sosa, A., Galindo, J. & Bocourt, R. (2007). Metanogénesisruminal: Aspectos generales y manipulación para su control.Revista Cubana de Ciencia Agrícola, 41(2), 105–114.https://biblat.unam.mx/es/revista/revista-cubana-deciencia-agricola/articulo/metanogenesis-ruminal-aspectosgenerales-y-manipulacion-para-su-control

  74. Stevenson, D. M. & Weimer, P. J. (2007). Dominance ofPrevotella and low abundance of classical ruminalbacterial species in the bovine rumen revealed by relativequantification real-time PCR. Applied Microbiology andBiotechnology, 75(1), 165–174. https://doi.org/10.1007/s00253-006-0802-y

  75. Suenaga, H. (2011). Targeted metagenomics: A high-resolutionmetagenomics approach for specific gene clustersin complex microbial communities. EnvironmentalMicrobiology, 14(1), 13–22. https://doi.org/10.1111/j.1462-2920.2011.02438.x

  76. Suenaga, H. (2015). Targeted metagenomics unveils themolecular basis for adaptive evolution of enzymes to theirenvironment. Frontiers in Microbiology, 6(1018) https://doi.org/10.3389/fmicb.2015.01018

  77. Thoetkiattikul, H., Mhuantong, W., Laothanachareon, T.,Tangphatsornruang, S., Pattarajinda, V., Eurwilaichitr,L. & Champreda, V. (2013). Comparative analysis ofmicrobial profiles in cow rumen fed with different dietaryfiber by tagged 16S rRNA gene pyrosequencing. CurrentMicrobiology, 67(2), 130–137. https://doi.org/10.1007/s00284-013-0336-3

  78. Thomas, T., Gilbert, J. & Meyer, F. (2012). Metagenomics—Aguide from sampling to data analysis. Microbial Informaticsand Experimentation, 2(3). https://doi.org/10.1186/2042-5783-2-3

  79. Toseland, A., Moxon, S., Mock, T. & Moulton, V. (2014)Metatranscriptomes from diverse microbial communities:assessment of data reduction techniques for rigorousannotation. BMC Genomics, 15(901). https://doi.org/10.1186/1471-2164-15-901

  80. Villegas-Rivera, G., Vargas-Cabrera, Y., González-Silva, N.,Aguilera-García, F., Gutiérrez-Vázquez, E., Bravo-Patiño,A., Cajero-Juárez, M., Baizabal-Aguirre, V. M. & Valdez-Alarcón, J. J. (2013). Evaluation of DNA extractionmethods of rumen microbial populations. World Journal ofMicrobiology and Biotechnology, 29(2), 301–307. https://doi.org/10.1007/s11274-012-1183-2

  81. Wallace, R. J., Rooke, J. A., McKain, N., Duthie, C.-A., Hyslop,J. J., Ross, D. W., Waterhouse, A., Watson, M. & Roehe,R. (2015). The rumen microbial metagenome associatedwith high methane production in cattle. BMC Genomics,16(839). https://doi.org/10.1186/s12864-015-2032-0

  82. Wallace, R. J., Snelling, T. J., McCartney, C. A., Tapio, I. &Strozzi, F. (2017). Application of meta-omics techniquesto understand greenhouse gas emissions originating fromruminal metabolism. Genetics, Selection, Evolution, 49(9),https://doi.org/10.1186/s12711-017-0285-6

  83. Wang, Z., Gerstein, M. & Snyder, M. (2009). RNA-Seq: arevolutionary tool for transcriptomics. Nature reviews.Genetics, 10(1), 57–63. https://doi.org/10.1038/nrg2484

  84. Wang, P., Qi, M., Barboza, P., Leigh, M. B., Ungerfeld, E.,Selinger, L. B., McAllister, T. A. & Forster, R. J. (2011).Isolation of high-quality total RNA from rumen anaerobicbacteria and fungi, and subsequent detection of glycosidehydrolases. Canadian Journal of Microbiology, 57(7),590–598. https://doi.org/10.1139/w11-048

  85. Wyness, L. (2016). The role of red meat in the diet: Nutrition andhealth benefits. Proceedings of the Nutrition Society, 75(3),227–232. https://doi.org/10.1017/S0029665115004267

  86. Yamada, T., Letunic, I., Okuda, S., Kanehisa, M. & Bork, P.(2011). iPath2.0: Interactive pathway explorer. NucleicAcids Research, 39(suppl_2), W412–W415. https://doi.org/10.1093/nar/gkr313

  87. Ye, Y. & Doak, T. G. (2009). A Parsimony Approach toBiological Pathway Reconstruction/Inference for Genomesand Metagenomes. PLOS Computational Biology, 5(8),e1000465. https://doi.org/10.1371/journal.pcbi.1000465

  88. Yu, Z. & Morrison, M. (2004). Improved extraction ofPCR-quality community DNA from digesta and fecalsamples. BioTechniques, 36(5), 808–812. https://doi.org/10.2144/04365ST04

  89. Zhang, R., Zhu, W., Zhu, W., Liu, J. & Mao, S. (2014). Effectof dietary forage sources on rumen microbiota, rumenfermentation and biogenic amines in dairy cows. Journalof the Science of Food and Agriculture, 94(9), 1886–1895.https://doi.org/10.1002/jsfa.6508




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

TIP Rev Esp Cienc Quim Biol. 2022;25