2025, Number 1
<< Back Next >>
Acta Med 2025; 23 (1)
Current physiopathological pathways and therapeutic targets for diabetic nephropathy in type 1 and 2 diabetes
Díaz GEJ, Sánchez AR, Bautista MB
Language: Spanish
References: 18
Page: 41-46
PDF size: 220.44 Kb.
ABSTRACT
The kidney is an organ with great functional importance; it regulates body fluid levels and blood pressure, helps in bone maintenance, and is essential in hematopoiesis. In patients with type 1 and 2 diabetes, one of the main complications is nephropathy since this pathology induces pathophysiological changes that affect the proper functioning of the kidney. The mechanism of diabetic nephropathy consists of alterations in homeostasis in renal hemodynamics, causing glomerular hypertension, ischemia, and hypoxia, an increase in oxidative stress, and upregulation of the renin-aldosterone system, which causes clinical manifestations such as albuminuria, decreased glomerular filtration rate and kidney disease. Currently, some therapies are based on the control of changes in renal hemodynamics, in the renin-aldosterone system, glomerular hypertension, ischemia, and hypoxia, such as control of glucose and blood pressure, inhibitors of the renin-angiotensin system, mineralocorticoid receptor antagonists and sodium-glucose cotransporter inhibitors. Currently, new therapeutic targets have been investigated to intervene in the progression of the pathophysiological changes of diabetic nephropathy and the mechanisms that give origin to it.
REFERENCES
De Boer IH, Khunti K, Sadusky T, Tuttle KR, Neumiller JJ, Rhee CM et al. Diabetes management in chronic kidney disease: a consensus report by the American Diabetes Association (ADA) and kidney disease: improving global outcomes (KDIGO). Diabetes Care. 2022; 45 (12): 3075-3090. Available in: https://doi.org/10.2337/dci22-0027
Selby NM, Taal MW. An updated overview of diabetic nephropathy: diagnosis, prognosis, treatment goals and latest guidelines. Diabetes Obes Metab. 2020; 22 Suppl 1: 3-15. doi: 10.1111/dom.14007.
Di Vincenzo A, Bettini S, Russo L, Mazzocut S, Mauer M, Fioretto P. Renal structure in type 2 diabetes: facts and misconceptions. J Nephrol. 2020; 33 (5): 901-907. Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7557481/pdf/40620_2020_Article_797.pdf
Pillai A, Fulmali D. A narrative review of new treatment options for diabetic nephropathy. Cureus. 2023; 15 (1): e33235. doi: 10.7759/cureus.33235.
Haider MZ, Aslam A. Proteinuria. [Updated 2023 Sep 4]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023. Available in: https://www.ncbi.nlm.nih.gov/books/NBK564390/
Karimifar M, Afsar J, Amini M, Moeinzadeh F, Feizi A, Aminorroaya A. The effect of linagliptin on microalbuminuria in patients with diabetic nephropathy: a randomized, double blinded clinical trial. Sci Rep. 2023; 13 (1): 3479. Available in: https://doi.org/10.1038/s41598-023-30643-7
Yamazaki T, Mimura I, Tanaka T, Nangaku M. Treatment of diabetic kidney disease: current and future. Diabetes Metab J. 2021; 45 (1): 11-26. doi: 10.4093/dmj.2020.0217.
Samsu N. Diabetic nephropathy: challenges in pathogenesis, diagnosis, and treatment. Biomed Res Int. 2021; 2021: 1497449. doi: 10.1155/2021/1497449.
Bakris GL, Agarwal R, Anker SD, Pitt B, Ruilope LM, Rossing P et al. Effect of finerenone on chronic kidney disease outcomes in type 2 diabetes. N Engl J Med. 2020; 383 (23): 2219-2229. doi: 10.1056/NEJMoa2025845.
MacIsaac RJ, Jerums G, Ekinci EI. Effects of glycaemic management on diabetic kidney disease. World J Diabetes. 2017; 8 (5): 172-186. doi: 10.4239/wjd.v8.i5.172.
Nordheim E, Geir Jenssen T. Chronic kidney disease in patients with diabetes mellitus. Endocr Connect. 2021; 10 (5): R151-R159. doi: 10.1530/EC-21-0097.
Parving HH, Lehnert H, Brochner-Mortensen J, Gomis R, Andersen S, Arner P et al. Irbesartan in patients with type 2 diabetes and microalbuminuria study group. The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N Engl J Med. 2001; 345 (12): 870-878.
Kanda H, Yamawaki K. Bardoxolone methyl: drug development for diabetic kidney disease. Clin Exp Nephrol. 2020; 24 (10): 857-864. doi: 10.1007/s10157-020-01917-5.
Stanigut AM, Pana C, Enciu M, Deacu M, Cimpineanu B, Tuta LA. Hypoxia-inducible factors and diabetic kidney disease-how deep can we go? Int J Mol Sci. 2022; 23 (18): 10413. doi: 10.3390/ijms231810413.
Mima A. Hypoxia-inducible factor-prolyl hydroxylase inhibitors for renal anemia in chronic kidney disease: advantages and disadvantages. Eur J Pharmacol. 2021; 912: 174583. doi: 10.1016/j.ejphar.2021.174583.
Li X, Lu L, Hou W, Huang T, Chen X, Qi J et al. Epigenetics in the pathogenesis of diabetic nephropathy. Acta Biochim Biophys Sin (Shanghai). 2022; 54 (2): 163-172. doi: 10.3724/abbs.2021016.
Matsui T, Higashimoto Y, Nishino Y, Nakamura N, Fukami K, Yamagishi SI. RAGE-aptamer blocks the development and progression of experimental diabetic nephropathy. Diabetes. 2017; 66 (6): 1683-1695. doi: 10.2337/db16-1281.
Alkhalaf A, Klooster A, van Oeveren W, Achenbach U, Kleefstra N, Slingerland RJ et al. A double-blind, randomized, placebo-controlled clinical trial on benfotiamine treatment in patients with diabetic nephropathy. Diabetes Care. 2010; 33 (7): 1598-1601.