medigraphic.com
SPANISH

Anales de Radiología, México

  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2013, Number 1

<< Back Next >>

Anales de Radiología México 2013; 12 (1)

Dynamic perfusion curves and spectroscopy in correlation with histologic tumor grade (Scarff- Bloom-Richardson) in patients with invasive ductal carcinoma

Serralde-Vázquez M, Martín-Ramos J, Redondo-Santos F, Guerrero-Avendaño G
Full text How to cite this article

Language: Spanish
References: 15
Page: 14-20
PDF size: 389.69 Kb.


Key words:

breast magnetic resonance, breast spectroscopy, perfusion curves, intraductal carcinoma.

ABSTRACT

Introduction. Magnetic resonance (MR) is a study used to evaluate the multicentricity and multifocality of carcinoma, as well as the invasive component of lesions and their post-treatment monitoring. Proton magnetic resonance spectroscopy (1HMRS), which quantifies the concentration of choline, combined with plotting of dynamic perfusion curves, provides information on the benignancy or malignancy of lesions and raises the specificity of resonance. The Scarf Bloom Richardson (SBR) histologic scale is used as a predictive and prognostic factor of survival in patients with breast cancer because it has been associated with the risk of tumor recurrence and greater frequency of metastasis.
Material and methods. A retrospective, descriptive study, conducted in the Hospital General de Mexico Breast Imaging Area in 46 patients, between 31 and 74 years of age, with histopathological diagnosis of invasive ductal carcinoma between March 1, 2009, and July 24, 2012. For these patients, the integral of choline was quantified and dynamic perfusion curves were plotted for the tumors with a standardized 1H-MRS method and the histologic grade of magnitude was rated on the SBR scale modified by Elston.
Results. Choline peaks above 2.38 ppm (maximum value observed: 453 ppm) were found in 42 (95.5 %) of the 44 women studied, and no trace of choline in two patients. As regards perfusion curves, type III curves were obtained in 22 patients (50%), type II in 11 (25%), and type I in 5 patients (11.3%). In the SBR tumor scores, 21 lesions were rated grade II (47.7%); 15 grade I (34.09%), and eight grade III (18.2%).
Discussion. This study shows that there was not a direct relationship between the choline value obtained and the histologic tumor grade; in other words, a high value does not precisely correlate with a higher histologic grade and vice-versa. On the other hand, perfusion curves are also not correlated with the degree of tumor differentiation. However, having found mostly type III curves and positive choline peaks in the lesions studied, we can say that the combined use of these two parameters raises the sensitivity of magnetic resonance and of the established morphological criteria.
Conclusion. Although the current parameters of magnetic resonance are effective in studying breast cancer, we need to investigate new parameters that serve as prognostic image markers to establish the best treatment to follow or modify an existing treatment.


REFERENCES

  1. Prevención, Tamizaje y Referencia oportuna de casos sospechosos de cáncer de mama en el primer nivel de atención. México: Secretaría de Salud, diciembre del 2011.

  2. Sánchez E, Lamothe M, Redondo F, Martín J. Curvas dinámicas por resonancia magnética de mama en pacientes del hospital general de México con categorías BIRADS 4 y 5 del CAR con su estirpe histológica. An Radiol Mex 2010;9(1):45-52.

  3. Flores B, Rodriguez C, Martin J, Fomperoza A, Redondo F. Correlación en la cuantificación de colina mediante espectroscopía en pacientes con carcinoma ductal invasivo y el grado histológico. An Radiol Mex 2010;9(2):85-91.

  4. Morris A, Liberman L. Breast MRI. Primera Edición. Ed. Springer 2005;79-135.

  5. Yeung DK, Cheung HS, Tse GM. Human breast lesions: characterization with contrast-enhanced in vivo proton MR spectroscopy—initial results. Radiology 2001;220:40–46.

  6. Kvistad KA, Bakken IJ, Gribbestad IS, et al. Characterization of neoplastic and normal human breast tissues with in vivo (1) H MR spectroscopy. J Magn Reson Imaging 1999;10:159–164.

  7. Gribbestad IS, Singstad TE, Nilsen G, et al. In vivo 1H MRS of normal breast and breasttumors using a dedicated double breast coil. J Magn Reson Imaging 1998;8:1191–1197

  8. Escribano F, Sentís M. Aplicaciones clínicas de la resonancia magnética en el cáncer de mama. Parte I. Rev. Senología Patología de mama, 2009;22(2):65-74.

  9. Escribano F, Sentís M. Aplicaciones clínicas de la resonancia magnética en cáncer de mama. Parte II. Rev. Senología Patología de mama, 2009;22(3):100-106.

  10. Bartella L. Proton (1H) MR Spectroscopy of the Breast. Radiographics 2007;27(Suppl 1):S241-52.

  11. American College of Radiology. Mammography. Breast Imaging Reporting and Data System, Breast Imaging Atlas, 4th Ed. Reston, VA: American College of Radiology, 2003.

  12. Mann M, Kuh CK. Breast MRI: guidelines from the European Society of Breast Imaging Eur Radiol 2008;18:1307–1318.

  13. Wernwe A. Kaiser Signs in MR Mammography. 1st ed. Ed. Springer 2007.

  14. Pérez Sánchez VM, Vela Chávez TA, Mora Tiscareño A. Diagnóstico Histopatológico y Factores Pronóstico en Cáncer Infiltrante de Glándula Mamaria Departamento de Patología Post-Mortem y Tumores Mamarios. Instituto Nacional de Cancerología. Cancerología 2008;3:7-17.

  15. Bartella L. Proton MR Spectroscopy with Choline Peak as Malignancy Marker Improves Positive Predictive Value For Breast Cancer Diagnosis. Radiology 2006;3:239.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Anales de Radiología México. 2013;12