medigraphic.com
SPANISH

TIP Revista Especializada en Ciencias Químico-Biológicas

ISSN 2395-8723 (Electronic)
ISSN 1405-888X (Print)
TIP Revista Especializada en Ciencias Químico-Biológicas
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2019, Number 1

<< Back Next >>

TIP Rev Esp Cienc Quim Biol 2019; 22 (1)

Identification of phenolic compounds in almond (Prunus dulcis) and pecan (Carya illinoinensis) extracts by liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS)

de la Rosa LA, Álvarez-Parrilla E, García-Fajardo JA
Full text How to cite this article

Language: Spanish
References: 25
Page: 1-13
PDF size: 823.93 Kb.


Key words:

functional foods, oleaginous fruits, condensed tannins, hydrolysable tannins, flavonoids.

ABSTRACT

Almonds and pecans are considered functional foods because their regular intake provides protection against several chronic-degenerative diseases. Phenolic compounds are some of the most bioactive components of these tree nuts; yet, their identification and characterization is regularly viewed as an analytical challenge. The aim of the present work was to characterize the phenolic compound profile of acetone and methanol extracts of almond and pecan nut, by using HPLC coupled to tandem mass spectrometry (MS/MS). First, high resolution MS (Q-TOF) was used to identify phenolic compounds in the extracts: 29 compounds were detected in almond (22 in acetone extract, 24 in ethanol extract) and 43 in pecan (39 in acetone extract, 37 in ethanol extract). Identity of 6 almond compounds and 20 pecan compounds was confirmed through analysis of their MS/MS fragmentation patterns. Phenolic profiles were different between pecan and almond but similar between extraction solvents for a same tree nut species. Flavonols and flavanones were the major types of phenolic compounds in almond, while pecan phenolics were mostly hydrolysable (ellagitannins acid ellagic acid derivatives) and condensed tannins (upto tetramers). Three ellagitannins are described for the first time in pecan.


REFERENCES

  1. Abu-Reidah, I.M., (2013). Characterization of phenolic compounds in highly-consumed vegetable matrice by using advanced analytical techniques (Caracterización de compuestos fenólicos en matrices vegetales mediante técnicas analíticas avanzadas). Doctoral thesis, Granada: Editorial de la Universidad de Granada.

  2. Abu-Reidah, I. M., Ali-Shtayeh, M. S., Jamous, R. M., Arráez-Román, D. & Antonio Segura-Carretero, A. (2015). HPLC–DAD–ESI-MS/MS screening of bioactive components from Rhus coriaria L. (Sumac) fruits. Food Chem., 166, 179–191. DOI: 10.1016/j. foodchem.2014.06.011

  3. Alasalvar, C. & Shahidi, F. (2008). Tree nuts: Composition, phytochemicals, and health effects. Boca Raton: CRC Press.

  4. Álvarez-Parrilla, E., Urrea-López, R. & de la Rosa, L. A. (2018). Bioactive components and health effects of pecan nuts and their by-products: a review. J. Food Bioact., 1, 56-92. DOI: 10.31665/JFB.2018.1127

  5. Aune, D., Keum, N., Giovannucci, E., Fadnes, L. T., Boffetta, P., Greenwood, D. C., Tonstad, S., Vatten, L. J., Riboli, E. & Norat, T. (2016). Nut consumption and risk of cardiovascular disease, total cancer, all-cause and cause specific mortality: a systematic review and dose-response meta-analysis of prospective studies. BMC Medicine, 14:207, 1-14. DOI: 10.1186/s12916-016-0730-3

  6. Barry, K. M., Davies, N. W. & Mohamed, C. L. (2001). Identification of hydrolysable tannins in the reaction zone of Eucalyptus nitens wood by High Performance Liquid Chromatography–Electrospray Ionisation Mass Spectrometry. Phytochem. Anal., 12, 120–127. DOI: 10.1002/pca.548

  7. Boulekbache-Makhlouf, L., Meudec, E., Chibane, M., Mazaruic, J. -P., Slimani, S., Henry, M., Cheynier, V. & Madani, K. (2010). Analysis by High-Performance Liquid Chromatography Diode Array Detection Mass Spectrometry of phenolic compounds in fruit of Eucalyptus globulus cultivated in Algeria. J. Agric. Food Chem,. 58, 12615–12624. DOI: 10.1021/jf1029509

  8. Chang, S. K., Alasalvar, C., Bolling, B. W. & Shahidi, F. (2016). Nuts and their co-products: The impact of processing (roasting) on phenolics, bioavailability, and health benefits – A comprehensive review. J. Funct. Foods, 26, 88–122. DOI: 10.1016/j.jff.2016.06.029

  9. de la Rosa, L. A., Álvarez-Parrilla, E. & Shahidi, F. (2011) Phenolic compounds and antioxidant activity of kernels and shells of mexican pecan (Carya illinoinensis). J. Agric. Food Chem., 59, 152-162. DOI: 10.1021/jf1034306

  10. Fabre, N., Rustan, I., Hoffmann, E. & Quetin-Leclercq, J. (2001). Determination of flavone, flavonol, and flavanone aglycones by negative ion liquid chromatography electrospray ion trap mass spectrometry. J. Am. Soc. Mass Spectrom., 12, 707-715. DOI: 10.1016/S1044- 0305(01)00226-4

  11. Gong, Y. & Pegg, R. B. (2017). Separation of ellagitannin-rich phenolics from U.S. pecans and chinese hickory nuts using Fused-Core HPLC columns and their characterization. J. Agric. Food Chem., 65, 5810−5820. DOI: 10.1021/acs. jafc.7b01597

  12. Grace, M. H., Warlick, C. C., Neff, S. A. & Lila, M. A. (2014). Efficient preparative isolation and identification of walnut bioactive components using high-speed counter-current chromatography and LC-ESI-IT-TOF-MS. Food Chem., 158, 229–238. DOI: 10.1016/j.foodchem.2014.02.117

  13. Hager, T. J., Howard, L. R., Liyanage, R., Lay, J. O. & Prior, R. L. (2008). Ellagitannin composition of blackberry as determined by HPLC-ESI-MS and MALDI-TOFMS. J. Agric. Food Chem., 56, 661–669. DOI: 10.1021/ jf071990b

  14. Justesen, U. (2000). Negative atmospheric pressure chemical ionisation low-energy collision activation mass spectrometry for the characterisation of flavonoids in extracts of fresh herbs. J. Chromatogr. A., 902, 369-379. DOI: 10.1016/S0021-9673(00)00861-X

  15. Kool, M. M., Comeskey, D. J., Cooney, J. M. & McGhie, T. K. (2010). Structural identification of the main ellagitannins of a boysenberry (Rubus loganbaccus x baileyanus Britt.) extract by LC–ESI-MS/MS, MALDI-TOF-MS and NMR spectroscopy. Food Chem., 119, 1535–1543. DOI: 10.1016/j.foodchem.2009.09.039

  16. Lamuel-Raventos, R. M. & St. Onge, M. –P. (2017). Prebiotic nut compounds and human microbiota. Crit. Rev. Food Sci. Nutr., 57, 3154–3163. DOI: 10.1080/10408398.2015.1096763

  17. Lee, J. −H., Johnson, O. V. & Talcott, S. T. (2005). Identification of ellagic acid conjugates and other polyphenolics in muscadine grapes by HPLC-ESI-MS. J. Agric. Food Chem., 53, 6003-6010. DOI: 10.1021/jf050468r

  18. Monagas, M., Garrido, I., Lebrón-Aguilar, R., Bartolomé, B. & Gómez-Cordovés, C. (2007). Almond (Prunus dulcis (Mill.) D.A. Webb) skins as a potential source of bioactive polyphenols. J. Agric. Food Chem., 55, 8498-8507. DOI: 10.1021/jf071780z

  19. Moqbel, H., Hawary, S. S. E. D. E., Sokkar, N. M., El- Naggar, E. M. B., Boghdady, N. E. & Halawany, A. M. E. (2018). HPLC-ESI-MS/MS characterization of phenolics in Prunus amygdalus, cultivar “umm alfahm” and its antioxidant and hepatoprotective activity. J. Food Meas. Charact., 12, 808-819. DOI: 10.1007/s11694-017-9695-

  20. Motilva, M. –J., Serra, A. & Macià, A. (2013). Analysis of food polyphenols by ultra high-performance liquid chromatography coupled to mass spectrometry: An overview. J. Chromatogr. A., 1292, 66-82. DOI: 10.1016/j. chroma.2013.01.012

  21. Mullen, W., Yokota, T., Lean, M. E. J. & Crozier, A. (2003). Analysis of ellagitannins and conjugates of ellagic acid and quercetin in raspberry fruits by LC–MSn. Phytochem., 64, 617–624. DOI: 10.1016/S0031-9422(03)00281-4

  22. Robbins, K. S., Ma, Y., Wells, M. L., Greenspan, P. & Pegg, R. B. (2014). Separation and characterization of phenolic compounds from U.S. pecans by Liquid Chromatography− Tandem Mass Spectrometry. J. Agric. Food Chem., 62, 4332−4341. DOI: 10.1021/jf500909h

  23. Sandhu, A. K. & Gu, L. (2010). Antioxidant capacity, phenolic content, and profiling of phenolic compounds in the seeds, skin, and pulp of Vitis rotundifolia (Muscadine grapes) as determined by HPLC-DAD-ESI-MSn. J. Agric. Food Chem. 58, 4681–4692. DOI: 10.1021/jf904211q

  24. Sauceda, A. E. Q., Sáyago-Ayerdi, S. G., Ayala-Zavala, J. F., Wall-Medrano, A., de la Rosa, L. A., González- Aguilar, G. A. & Álvarez-Parrilla, E. (2018). Biological Actions of Phenolic Compounds. En: Yahia, E. M. (Ed.) Fruit and Vegetable Phytochemicals: Chemistry and Human Health (pp. 286–307). Hoboken: John Wiley and Sons Ltd.

  25. Torres-Aguirre, G. A., Muñoz-Bernal, O. A., Álvarez-Parrilla, E., Núñez-Gastélum, J. A., Wall-Medrano, A., Sáyago- Ayerdi, S. G. & de la Rosa, L. A. (2018). Optimización de la extracción e identificación de compuestos polifenólicos en anís (Pimpinella anisum), clavo (Syzygium aromaticum) y cilantro (Coriandrum sativum) mediante HPLC acoplado a espectrometría de masas. TIP Revista Especializada en Ciencias Químico-Biológicas, 21, 103-115. DOI: 10.22201/fesz.23958723e.2018.2.4




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

TIP Rev Esp Cienc Quim Biol. 2019;22